Impact of quantum computer on Impagliazzo’s five worlds

Samuel Bouaziz--Ermann
Based on joint work with Minki Hhan, Quoc-Huy Vu
and Garazi Muguruza

Supervised by Alex Bredariol Grilo and Damien Vergnaud
Work In Progress

April 24, 2025

-, SORBONNE
UNIVERSITE

I=.
e

1/27



The plan

1. Classical Assumptions

2. Quantum Assumptions

3. Ourresult

4. High level idea of the proof
5. Conclusion

2/27



Minimal assumption for classical cryptography

One-Way Functions

Afunction F : {0,1}" — {0, 1}" is a One-Way Function (OWF) if:
1. F(x) can be computed efficiently.

2. Giveny = F(x), itis hard to compute x.
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Minimal assumption for classical cryptography

One-Way Functions
Afunction F : {0,1}" — {0, 1}" is a One-Way Function (OWF) if:
1. F(x) can be computed efficiently.

2. Giveny = F(x), itis hard to compute x.

One-Way Functions are minimal for cryptography

» Most advanced cryptographic schemes require one-way functions.
» For example, a hash function has to be a one-way function.
» There is nothing (interesting) weaker.
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Some results about classical cryptography

JOWF = P # NP
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Some results about classical cryptography

Theorem

JOWF = P # NP

Theorem (Goldreich-Levin)

JOWF < JPRNG

Theorem

JPKE = JOWF

Theorem ([IR89])

JOWF # JPKE
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A word on achieving possibility and impossibility results.

Black-box constructions

They are the most natural class of constructions.
A black-box construction of A from B means that:

» The construction of A from B does not use the “code” of B.
» If an adversary breaks A, then an adversary breaks B, without using the “code” of A.

Black-box constructions relativizes, meaning that for any oracle O such that B exists
(relative to O), then A exists (relative to O).

Black-box impossibility results

A black-box impossibility result of A from B consists of exhibiting an oracle O such that,
relative to O, B exists but not A.
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Motivation

But...why? &
No practical use
The goal is to understand the strength
of assumptions and primitives



Worlds of cryptography

Impagliazzo’s five worlds [Imp95]

“* Algorithmica P = NP.

22 Heuristica P = NP but NP problems are easy on average.

“® pessiland P = NP but one-way functions do not exist.

< Minicrypt One-way functions exist, but public key
cryptography is impossible.

'C cryptomania Public key cryptography is possible.
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Quantum Computation

A n-qubit state |1p) is a unitary vector of a Hilbert space (C?").
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Quantum Computation

A n-qubit state |¢p) is a unitary vector of a Hilbert space (C%").
Operations are unitary matrices or measurements.

An algorithm can be written:

2 = M Us

€1 C < U ’lP ’0
Output Measurement/ \ |nph

Discarded bits Unitary Unitary Ancillas
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Quantum Pseudorandomness

Let’s dive into the quantum paradigm now and define quantum pseudorandomness.
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Quantum Pseudorandomness

Let’s dive into the quantum paradigm now and define quantum pseudorandomness.
But first, classical pseudorandomness.
Pseudorandom Number Generator
Afunction F : {0,1}" — {0, 1}’ is a Pseudorandom Number Generator (PRNG) if:
1. F(x) can be computed efficiently.
2. F(x) =~ Uy, when x < U,.
3. {>n.
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Quantum Pseudorandomness

Quantum Randomness

We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure piyn.

-
ZS
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Quantum Pseudorandomness

Quantum Randomness

We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure piyn.

-
s

Pseudorandom Quantum States Generators

A function F : {0, 1}A — (C2)®” is a Pseudorandom Quantum State generator (PRS) if:
1. F(k) can be computed efficiently.
2. F(k) = pan, when k < U,.
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Formal definition of PRSs

Definition (Pseudorandom quantum states [JLS18])

A keyed family of n-qubit quantum states {|@x) }(c(0.1)» is pseudorandom if the
following two conditions hold:
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Formal definition of PRSs

Definition (Pseudorandom quantum states [JLS18])

A keyed family of n-qubit quantum states {|@x) }(c(0.1)» is pseudorandom if the
following two conditions hold:

1. Efficient generation. There is a QPT algorithm G such that:

Ga(K) = [ox) -

2. Pseudorandomness. For any QPT adversary A and all polynomials t(-), we have:

Pr[A(n)*W) =1]

[v)=pan

Pr[A(lp0)* M) =1] - < negl(2).

k+{0,1}*
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Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.

» Quantum Cryptomania: Public Key Cryptography exists!
(resistant to quantum attacks)
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Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.

» Quantum Cryptomania: Public Key Cryptography exists!
(resistant to quantum attacks)

» MiniQcrypt: Quantum resistant One-Way Functions exist!

» MicroCrypt: PRSs exist!
oblivious transfer, multi party computation, public key encryption with quantum keys, quantum

one-time digital signatures, pseudo one-time pad encryption schemes, statistically binding and

computationally hiding commitments and quantum computational zero knowledge proofs, bit

commitments...
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Relation between quantum primitives

Theorem ([JLS18])

Classical @= Quantum @@

Theorem ([Kre21])

Quantum @@= Classical @
There can be quantum cryptography even if “P = NP”
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Different type of Quantum Pseudorandomness

PRU, PRFS, PRS, 1PRS, EFI pairs, OWSG...
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Different type of Quantum Pseudorandomness

PRU, PRFS, PRS, 1PRS, EFI pairs, OWSG...

Claim
Classically, all these primitives are equivalent.

In the quantum setting however...
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The Landscape of Quantum Assumptions

DR

Figure: https://sattath.github.io/microcrypt-zoo/
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The Landscape of Quantum Assumptions

Quantum Minimal Assumptions Classical Minimal Assumptions

PRU< L PRP
( ¥ .............. .............. 7
PRFS PRF
s 5
Short-PRS  PRS | PRG<—>PRG
b
1PRS OWSG OWP | PRG<—> OWF <—> C-OWP

Q-COM <> EFl pairs | C-COM <—>EFID
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Main result

Theorem
There exists an oracle O relative to which PRFSs exist,

but PRUs do not.
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Main result

Theorem
There exists an oracle O relative to which PRFSs exist,
but PRUs do not.

» PRFSs are a natural generalization of PRSs.

» PRUs are unitaries that are indistinguishable from
Haar-random unitaries.
O — ( Ol ) 02 )
- ~
3 PRFS A PRU
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Common Haar Function-like State Oracle

The Common Haar Function-like State Oracle (CHFS oracles) with length £ is a family of
unitaries {Sy }ye{o,1}- such that:
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Common Haar Function-like State Oracle

The Common Haar Function-like State Oracle (CHFS oracles) with length £ is a family of
unitaries {Sy }ye{o,1}- such that:

10) = |¢x)
Sx 19 ¢x) = [0),
) = 1), i [p) & span([0), [¢x)),

where |¢y) is a predetermined Haar-random state of length £(|x|).

Claim
PRFSs exist relative to O, = the CHFS oracles.

Now let’s rule out PRUSs!
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Definition of PRUs

Definition (Pseudorandom unitaries [JLS18])

A keyed family of n-qubit unitaries {Uk } (o 1)+ is pseudorandom if the following two
conditions hold:

19/27



Definition of PRUs

Definition (Pseudorandom unitaries [JLS18])

A keyed family of n-qubit unitaries {Uk } (o 1)+ is pseudorandom if the following two
conditions hold:

1. Efficient generation. There is a QPT algorithm G such that, for any state |¢):

Ga(k, [$)) = Ukly).

19/27



Definition of PRUs

Definition (Pseudorandom unitaries [JLS18])

A keyed family of n-qubit unitaries {Uk } (o 1)+ is pseudorandom if the following two
conditions hold:

1. Efficient generation. There is a QPT algorithm G such that, for any state |¢):

Ga(k, [$)) = Ukly).

2. Pseudorandomness. For any QPT adversary A, we have:

P [ (1) =1 =y 47 (1) =] < e

k«{0,1}4 Vié—pion
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Breaking PRUs

By contradiction, consider the PRU algorithm { Gy }yc 10,13+

Ge: lyy gy = uf Sw ... Ul Sw oy

X7 X1

/ Qquy / Qulry \

Unitary Unitary Unitary

k)

¥)
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Breaking PRUs

By contradiction, consider the PRU algorithm { Gy }yc 10,13+

k k k
Ge:lp) = 19) = U S o u Swou? )
/ Query / Query \
Unitary Unitary Unitary

We assume there is no ancilla. (general case is WIP) &
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The tools

Lemma (Swap test)

The swap test on input (|0}, |p)) outputs 1 with probability

1+ {plo) |?
—

in which case we say that it passes the swap test.
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Attack idea

The algorithm

Input V: either one of {Gy } or a truly Haar random unitary.
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Attack idea

The algorithm

Input V: either one of {Gy } or a truly Haar random unitary.
For all k:

» We compare V with G, using swap tests.
» If they are close, output 1.
Output 0.

» There are 0(2") operations, but O, can make it possible
» But here, O, will be dependant of O, which is bad for the existence of PRFS!
» We will approximate G, without querying O1, and O, will be independent of O; =

~
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Breaking PRUs

For any state |) independent from the oracle,

Scly) = |9) .
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Breaking PRUs

Claim
For any state |) independent from the oracle,

Scly) = |9) .

Therefore, one may argue that

k k k k
lelP)=U(r)'5x§k>°U(r_)1°---'U§)'5<k>°Uc(>)|lP>

X1

k k k
~ UM uW U U
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Breaking PRUs

Claim
For any state |) independent from the oracle,

Sx ) ~ [) .

Therefore, one may argue that

k k k k
Gk|ll)>=U(r)'5X§k>°U§_)1°---'U()'5 0 - U 1)
k k k
~U% U U U )

However, the loss is proportional to 1/2/X| 2@
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Breaking PRUs

Lemma (Informal Tomography Lemma)

Let |p) be a quantum state of dimension n. Given O(2") copies of 1), there exists an
algorithm that can approximate |¢) with negligible error.
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Breaking PRUs

Lemma (Informal Tomography Lemma)

Let |p) be a quantum state of dimension n. Given O(2") copies of 1), there exists an
algorithm that can approximate |¢) with negligible error.

We define:
. S,, forsmall |x]|,

T I,  forlarge |x|.

K) =~ k k) = k
Fk:\1/;}HU(T)-S(k)-U§_1'---'U§)'5X§k>'Ué)\l/’>’

XT
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Breaking PRUs

Lemma (Informal Tomography Lemma)

Let |p) be a quantum state of dimension n. Given O(2") copies of 1), there exists an
algorithm that can approximate |¢) with negligible error.

We define:
«~ | S, forsmall|x],
|1, forlarge |x|.
k) g k K g k
Fic: [§) — U(r)°5x§k>'Ug_)l'--ng)'SXy)'Ué)\l/)%

Fr [9) = Gk |).
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Breaking PRUs

Input V: either one of {G } or a truly Haar random unitary.
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Input V: either one of {G } or a truly Haar random unitary.
Informally: we compare V with all our simulations F of the G.
The attack
Prepares ® = (|p) ® V |p))®M for some large M and defines:
Py: oninput® = (|p) ® V |p))®M, it applies (F, @ 1d)*M, applies M swap tests
on each copy; if sufficiently many copies pass the swap test, it returns 1.
Otherwise it returns 0.

It works
We can show that
» if V = Gy, Py returns 1 with high probability,
» if V is a Haar random unitary, P, returns almost always 0.

This can be done with a QPSPACE oracle! (Quantum OR Lemma) #%
Relativeto O = (04, O,) =(CHFS,QPSPACE), we have PRUs but not PRFSs!

25/27



Other results

Assuming a conjecture is true,

EIShOI’t—PRFS > 3 PRG (with negligible

correctness)
unless BQP # QMA.

26/27



Other results

Theorem

Assuming a conjecture is true,

EIShOI’t—PRFS > 3 PRG (with negligible

correctness)
unless BQP # QMA.

This complements a previous result that shows that PRFSs can be used to construct
PRGs with 1/poly(-) correctness error.

26/27



Other results

Theorem

Assuming a conjecture is true,

EIShOI’t—PRFS > 3 PRG (with negligible

correctness)
unless BQP # QMA.

This complements a previous result that shows that PRFSs can be used to construct
PRGs with 1/poly(-) correctness error.

Theorem

Assuming the same conjecture is true,

HShort-PRS qﬁ} El [Ong-PRS (with  pure

generation)

26/27



Other results

Theorem

Assuming a conjecture is true,

EIShOI’t—PRFS > 3 PRG (with negligible

correctness)
unless BQP # QMA.

This complements a previous result that shows that PRFSs can be used to construct
PRGs with 1/poly(-) correctness error.

Theorem

Assuming the same conjecture is true,

HShort-PRS qﬁ} El [Ong-PRS (with  pure

generation)

This complements a previous result that shows that there exits an oracle relative which
PRSs exist but short PRSs do not.
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Conclusion

» Oracle separation of PRUs and PRFSs (There is still some work left to finish our
proof!)

» Conditionned oracle separation of short-PRSs and PRSs.
» Also, there is still a lot left to do to fully grasp the strength of quantum assumptions.
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Conclusion

» Oracle separation of PRUs and PRFSs (There is still some work left to finish our
proof!)

» Conditionned oracle separation of short-PRSs and PRSs.
» Also, there is still a lot left to do to fully grasp the strength of quantum assumptions.

Thank you for your attention!
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The tools

Lemma (Quantum OR lemma)

Let {IT;};c(v) be POVMs. Let0 < e < 1/2andd > 0. Let ¥ be a quantum state such that
either

1. thereexistsi € [N] such that Tr[IL'¥] > 1 —¢, or
2. foralli € [N], Tr[IL¥] <.
Then, there is a quantum circuit C, such that in case i)

(1-¢)?
=

Pr(1+ C(Y)) >

and in caseii),
Pr(1+ C(Y)) < 4NJ.

The circuit C can be implemented in QPSPACE.
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