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The plan

1. Classical Assumptions
2. Quantum Assumptions
3. Our result
4. High level idea of the proof
5. Conclusion
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Minimal assumption for classical cryptography

One-Way Functions
A function F : {0, 1}n → {0, 1}n is a One-Way Function (OWF) if:
1. F(x) can be computed efficiently.
2. Given y = F(x), it is hard to compute x.

One-Way Functions are minimal for cryptography
ä Most advanced cryptographic schemes require one-way functions.
ä For example, a hash function has to be a one-way function.
ä There is nothing (interesting) weaker.
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Some results about classical cryptography

Theorem

∃OWF ⇒ P 6= NP

Theorem (Goldreich-Levin)

∃OWF ⇔ ∃PRNG
Theorem

∃PKE ⇒ ∃OWF
Theorem ([IR89])

∃OWF ; ∃PKE
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Black-box proof

A word on achieving possibility and impossibility results.

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from Bmeans that:

ä The construction of A from B does not use the “code” of B.
ä If an adversary breaks A, then an adversary breaks B, without using the “code” of A.

Black-box constructions relativizes, meaning that for any oracleO such that B exists
(relative toO), then A exists (relative toO).

Black-box impossibility results
A black-box impossibility result of A from B consists of exhibiting an oracleO such that,
relative toO, B exists but not A.
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Motivation

But…why?����

No practical use
The goal is to understand the strength

of assumptions and primitives
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Worlds of cryptography

Impagliazzo’s five worlds [Imp95]

����� Algorithmica P = NP.
�� Heuristica P 6= NP but NP problems are easy on average.
��� Pessiland P 6= NP but one-way functions do not exist.
�� Minicrypt One-way functions exist, but public key

cryptography is impossible.
���� Cryptomania Public key cryptography is possible.
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Quantum Computation

A n-qubit state |ψ〉 is a unitary vector of a Hilbert space (C2n ).

Operations are unitary matrices or measurements.

An algorithm can be written:

c1 c2 = M Us · · · U0 |ψ〉 |0〉⊗m

Unitary Unitary
Input

Ancillas
Measurement

Discarded bits
Output
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Quantum Pseudorandomness

Let’s dive into the quantum paradigm now and define quantum pseudorandomness.

But first, classical pseudorandomness.

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number Generator (PRNG) if:
1. F(x) can be computed efficiently.
2. F(x) ≈ U`, when x ← Un.
3. ` > n.
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Quantum Pseudorandomness

Quantum Randomness
We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure µ2n .

PseudorandomQuantum States Generators
A function F : {0, 1}λ →

(
C2)⊗n is a PseudorandomQuantum State generator (PRS) if:

1. F(k) can be computed efficiently.
2. F(k) ≈ µ2n , when k ← Uλ.
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Formal definition of PRSs

Definition (Pseudorandom quantum states [JLS18])
A keyed family of n-qubit quantum states {|ϕk〉}k∈{0,1}λ is pseudorandom if the
following two conditions hold:

1. Efficient generation. There is a QPT algorithm G such that:

Gλ(k) = |ϕk〉 .

2. Pseudorandomness. For any QPT adversaryA and all polynomials t(·), we have:∣∣∣∣∣ Pr
k←{0,1}λ

[
A

(
|ϕk〉⊗t(λ)

)
= 1

]
− Pr
|ν〉←µ2n

[
A

(
|ν〉⊗t(λ)

)
= 1

]∣∣∣∣∣ ≤ negl(λ).
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Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.
ä Quantum Cryptomania: Public Key Cryptography exists!

(resistant to quantum attacks)

ä MiniQcrypt: Quantum resistant One-Way Functions exist!
ä MicroCrypt: PRSs exist!

oblivious transfer, multi party computation, public key encryption with quantum keys, quantum

one-time digital signatures, pseudo one-time pad encryption schemes, statistically binding and

computationally hiding commitments and quantum computational zero knowledge proofs, bit

commitments...
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Relation between quantum primitives

Theorem ([JLS18])

Classical ⇒ Quantum

Theorem ([Kre21])

Quantum ; Classical
There can be quantum cryptography even if “P = NP”

�������
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Different type of Quantum Pseudorandomness

PRU, PRFS, PRS, 1PRS, EFI pairs, OWSG...

Claim
Classically, all these primitives are equivalent.

In the quantum setting however...
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The Landscape of Quantum Assumptions

Figure: https://sattath.github.io/microcrypt-zoo/
15 / 27



The Landscape of Quantum Assumptions

PRU

PRFS

PRSShort-PRS

OWSG OWP1PRS

EFI pairsQ-COM

PRP

PRF

PRGPRG

OWF C-OWPPRG

EFIDC-COM

QuantumMinimal Assumptions Classical Minimal Assumptions

*
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Main result

Theorem

There exists an oracleO relative to which PRFSs exist,
but PRUs do not.

ä PRFSs are a natural generalization of PRSs.
ä PRUs are unitaries that are indistinguishable from

Haar-random unitaries.
O = ( O1

, O2 )

∃ PRFS @ PRU
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Common Haar Function-like State Oracle

The Common Haar Function-like State Oracle (CHFS oracles) with length ` is a family of
unitaries {Sx}x∈{0,1}∗ such that:

Sx :


|0〉 7→ |φx〉 ,
|φx〉 7→ |0〉 ,
|ψ〉 7→ |ψ〉 , if |ψ〉 /∈ span(|0〉 , |φx〉),

where |φx〉 is a predetermined Haar-random state of length `(|x|).

Claim
PRFSs exist relative toO1 = the CHFS oracles.

Now let’s rule out PRUs!
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Definition of PRUs

Definition (Pseudorandom unitaries [JLS18])
A keyed family of n-qubit unitaries {Uk}k∈{0,1}λ is pseudorandom if the following two
conditions hold:

1. Efficient generation. There is a QPT algorithm G such that, for any state |ψ〉:

Gλ(k, |ψ〉) = Uk |ψ〉 .

2. Pseudorandomness. For any QPT adversaryA, we have:∣∣∣∣ Pr
k←{0,1}λ

[
AUk

(
1λ

)
= 1

]
− Pr

V←µ2n

[
AV

(
1λ

)
= 1

]∣∣∣∣ ≤ negl(λ).
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Breaking PRUs

By contradiction, consider the PRU algorithm {Gk}k∈{0,1}∗ :

Gk : |ψ〉 7→ |ψ′〉 = U(k)
T

S
x(k)T · · · U(k)

1
S
x(k)1

U(k)
0 |ψ〉

Unitary Unitary
Query Query

Unitary

We assume there is no ancilla. (general case is WIP)����
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The tools

Lemma (Swap test)
The swap test on input (|σ〉 , |ρ〉) outputs 1 with probability

1+ | 〈ρ|σ〉 |2
2

,

in which case we say that it passes the swap test.
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Attack idea

The algorithm
Input V : either one of {Gk} or a truly Haar random unitary.

For all k:
ä We compare V with Gk, using swap tests.
ä If they are close, output 1.

Output 0.

ä There are O(2n) operations, butO2 canmake it possible
ä But here,O2 will be dependant ofO1, which is bad for the existence of PRFS!���
ä Wewill approximate Gk without queryingO1, andO2 will be independent ofO1��
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Breaking PRUs

Claim
For any state |ψ〉 independent from the oracle,

Sx |ψ〉 ≈ |ψ〉 .

Therefore, one may argue that

Gk |ψ〉 = U(k)
T · Sx(k)T

· U(k)
T−1 · . . . · U(k)

1 · Sx(k)1
· U(k)

0 |ψ〉

≈ U(k)
T · U

(k)
T−1 · . . . · U(k)

1 · U
(k)
0 |ψ〉 .

However, the loss is proportional to 1/2|x|�������
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Breaking PRUs

Lemma (Informal Tomography Lemma)
Let |ψ〉 be a quantum state of dimension n. Given O(2n) copies of |ψ〉, there exists an
algorithm that can approximate |ψ〉with negligible error.

We define:

S̃x =

{
S′x, for small |x|,
I, for large |x|.

Fk : |ψ〉 7→ U(k)
T · S̃x(k)T

· U(k)
T−1 · . . . · U(k)

1 · S̃x(k)1
· U(k)

0 |ψ〉 ,

Fk |ψ〉 ≈ Gk |ψ〉 .
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Breaking PRUs

Input V : either one of {Gk} or a truly Haar random unitary.

Informally: we compare V with all our simulations Fk of the Gk.

The attack
Prepares Φ = (|ρ〉 ⊗ V |ρ〉)⊗M for some largeM and defines:

Pk: on input Φ = (|ρ〉 ⊗ V |ρ〉)⊗M, it applies (Fk ⊗ Id)⊗M, appliesM swap tests
on each copy; if sufficiently many copies pass the swap test, it returns 1.
Otherwise it returns 0.

It works
We can show that

ä if V = Gk, Pk returns 1 with high probability,
ä if V is a Haar random unitary, Pk returns almost always 0.

This can be done with a QPSPACE oracle! (Quantum OR Lemma)��
Relative toO = (O1,O2) =(CHFS,QPSPACE), we have PRUs but not PRFSs!
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Other results

Theorem
Assuming a conjecture is true,

∃short-PRFS; ∃ PRG (with negligible
correctness)

unless BQP 6= QMA.

This complements a previous result that shows that PRFSs can be used to construct
PRGs with 1/poly(·) correctness error.

Theorem
Assuming the same conjecture is true,

∃short-PRS; ∃ long-PRS (with pure
generation)

This complements a previous result that shows that there exits an oracle relative which
PRSs exist but short PRSs do not.
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Conclusion

ä Oracle separation of PRUs and PRFSs (There is still some work left to finish our
proof!)

ä Conditionned oracle separation of short-PRSs and PRSs.
ä Also, there is still a lot left to do to fully grasp the strength of quantum assumptions.

Thank you for your attention!
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The tools

Lemma (Quantum OR lemma)

Let {Πi}i∈[N] be POVMs. Let 0 < ε < 1/2 and δ > 0. Let Ψ be a quantum state such that
either
1. there exists i ∈ [N] such thatTr[ΠiΨ] ≥ 1− ε, or
2. for all i ∈ [N],Tr[ΠiΨ] ≤ δ.

Then, there is a quantum circuit C, such that in case i)

Pr(1← C(Ψ)) ≥ (1− ε)2

7
,

and in case ii),
Pr(1← C(Ψ)) ≤ 4Nδ.

The circuit C can be implemented in QPSPACE.
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