Impact of quantum computer on Impagliazzo's five worlds

Samuel Bouaziz--Ermann Based on joint work with Minki Hhan, Quoc-Huy Vu and Garazi Muguruza

Supervised by Alex Bredariol Grilo and Damien Vergnaud Work In Progress

April 24, 2025

- 1. Classical Assumptions
- 2. Quantum Assumptions
- 3. Our result
- 4. High level idea of the proof
- 5. Conclusion

Minimal assumption for classical cryptography

One-Way Functions

A function $F : \{0, 1\}^n \to \{0, 1\}^n$ is a One-Way Function (OWF) if:

1. F(x) can be computed efficiently.

2. Given y = F(x), it is hard to compute x.

Minimal assumption for classical cryptography

One-Way Functions

A function $F : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a One-Way Function (OWF) if:

1. F(x) can be computed efficiently.

2. Given y = F(x), it is hard to compute x.

One-Way Functions are minimal for cryptography

- Most advanced cryptographic schemes require one-way functions.
- > For example, a hash function has to be a one-way function.
- > There is nothing (interesting) weaker.

Theorem

$$\exists OWF \Rightarrow P \neq NP$$

Theorem

$$\exists OWF \Rightarrow P \neq NP$$

Theorem (Goldreich-Levin)

$$\exists OWF \Leftrightarrow \exists PRNG$$

Theorem

$$\exists OWF \Rightarrow P \neq NP$$

Theorem (Goldreich-Levin)

$$\exists OWF \Leftrightarrow \exists PRNG$$

Theorem

$\exists PKE \Rightarrow \exists OWF$

Theorem

$$\exists OWF \Rightarrow P \neq NP$$

Theorem (Goldreich-Levin)

$$\exists OWF \Leftrightarrow \exists PRNG$$

Theorem

$$\exists PKE \Rightarrow \exists OWF$$

Theorem ([IR89])

$$\exists OWF \Rightarrow \exists PKE$$

A word on achieving possibility and impossibility results.

A word on achieving possibility and impossibility results.

Black-box constructions

They are the most natural class of constructions.

A word on achieving possibility and impossibility results.

Black-box constructions

They are the most natural class of constructions. A black-box construction of A from B means that:

> The construction of A from B does not use the "code" of B.

A word on achieving possibility and impossibility results.

Black-box constructions

They are the most natural class of constructions. A black-box construction of A from B means that:

- > The construction of A from B does not use the "code" of B.
- > If an adversary breaks A, then an adversary breaks B, without using the "code" of A.

A word on achieving possibility and impossibility results.

Black-box constructions

They are the most natural class of constructions. A black-box construction of A from B means that:

- > The construction of A from B does not use the "code" of B.
- > If an adversary breaks A, then an adversary breaks B, without using the "code" of A.

Black-box constructions *relativizes*, meaning that for any oracle \mathcal{O} such that B exists (relative to \mathcal{O}), then A exists (relative to \mathcal{O}).

A word on achieving possibility and impossibility results.

Black-box constructions

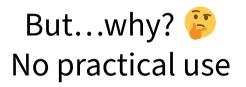
They are the most natural class of constructions. A black-box construction of A from B means that:

- > The construction of A from B does not use the "code" of B.
- > If an adversary breaks A, then an adversary breaks B, without using the "code" of A.

Black-box constructions *relativizes*, meaning that for any oracle O such that B exists (relative to O), then A exists (relative to O).

Black-box impossibility results

A black-box impossibility result of A from B consists of exhibiting an oracle \mathcal{O} such that, relative to \mathcal{O} , B exists but not A.



But...why? 😕 No practical use The goal is to understand the strength of assumptions and primitives

Impagliazzo's five worlds [Imp95]

- Algorithmica P = NP.
- Heuristica P \neq NP but NP problems are easy on average.
- Pessiland $P \neq NP$ but one-way functions do not exist.
- Minicrypt One-way functions exist, but public key cryptography is impossible.
 - Cryptomania Public key cryptography is possible.

Quantum Computation

A n-qubit state $|\psi\rangle$ is a unitary vector of a Hilbert space (\mathbb{C}^{2^n}).

Quantum Computation

A n-qubit state $|\psi\rangle$ is a unitary vector of a Hilbert space (\mathbb{C}^{2^n}).

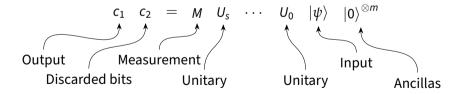
Operations are unitary matrices or measurements.

Quantum Computation

A n-qubit state $|\psi\rangle$ is a unitary vector of a Hilbert space (\mathbb{C}^{2^n}).

Operations are unitary matrices or measurements.

An algorithm can be written:



Let's dive into the quantum paradigm now and define quantum pseudorandomness.

Let's dive into the quantum paradigm now and define quantum pseudorandomness. But first, classical pseudorandomness.

Let's dive into the quantum paradigm now and define quantum pseudorandomness. But first, classical pseudorandomness.

Pseudorandom Number Generator

A function $F : \{0, 1\}^n \to \{0, 1\}^\ell$ is a Pseudorandom Number Generator (PRNG) if:

- **1.** F(x) can be computed efficiently.
- **2.** $F(x) \approx U_{\ell}$, when $x \leftarrow U_n$.
- **3.** $\ell > n$.

Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure μ_{2^n} .

Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure μ_{2^n} .

Pseudorandom Quantum States Generators

A function $F : \{0, 1\}^{\lambda} \to (\mathbb{C}^2)^{\otimes n}$ is a Pseudorandom Quantum State generator (PRS) if:

Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure μ_{2^n} .

Pseudorandom Quantum States Generators

A function $F : \{0, 1\}^{\lambda} \to (\mathbb{C}^2)^{\otimes n}$ is a Pseudorandom Quantum State generator (PRS) if:

1. F(k) can be computed efficiently.

Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure μ_{2^n} .

Pseudorandom Quantum States Generators

A function $F : \{0, 1\}^{\lambda} \to (\mathbb{C}^2)^{\otimes n}$ is a Pseudorandom Quantum State generator (PRS) if:

1. F(k) can be computed efficiently.

2.
$$F(k) \approx \mu_{2^n}$$
, when $k \leftarrow \mathcal{U}_{\lambda}$.

Definition (Pseudorandom quantum states [JLS18])

A keyed family of *n*-qubit quantum states $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$ is *pseudorandom* if the following two conditions hold:

Definition (Pseudorandom quantum states [JLS18])

A keyed family of *n*-qubit quantum states $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$ is *pseudorandom* if the following two conditions hold:

1. Efficient generation. There is a QPT algorithm *G* such that:

$$G_{\lambda}(k) = |\varphi_k
angle$$
 .

Definition (Pseudorandom quantum states [JLS18])

A keyed family of *n*-qubit quantum states $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$ is *pseudorandom* if the following two conditions hold:

1. Efficient generation. There is a QPT algorithm *G* such that:

$$G_{\lambda}(k) = \ket{\varphi_k}.$$

2. Pseudorandomness. For any QPT adversary A and all polynomials $t(\cdot)$, we have:

$$\Pr_{k \leftarrow \{0,1\}^{\lambda}} \left[\mathcal{A}\left(\left| \varphi_k \right\rangle^{\otimes t(\lambda)} \right) = 1 \right] - \Pr_{\left| \nu \right\rangle \leftarrow \mu_{2n}} \left[\mathcal{A}\left(\left| \nu \right\rangle^{\otimes t(\lambda)} \right) = 1 \right] \right| \leq \operatorname{negl}(\lambda).$$

Worlds relative to which quantum computation is possible.

 Quantum Cryptomania: Public Key Cryptography exists! (resistant to quantum attacks) Worlds relative to which quantum computation is possible.

- Quantum Cryptomania: Public Key Cryptography exists! (resistant to quantum attacks)
- MiniQcrypt: Quantum resistant One-Way Functions exist!

Worlds relative to which quantum computation is possible.

- Quantum Cryptomania: Public Key Cryptography exists! (resistant to quantum attacks)
- MiniQcrypt: Quantum resistant One-Way Functions exist!
- MicroCrypt: PRSs exist!

oblivious transfer, multi party computation, public key encryption with quantum keys, quantum one-time digital signatures, pseudo one-time pad encryption schemes, statistically binding and computationally hiding commitments and quantum computational zero knowledge proofs, bit commitments...

Relation between quantum primitives

Theorem ([JLS18])



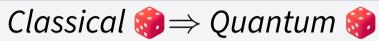
Relation between quantum primitives

Theorem ([JLS18])

Theorem ([Kre21])

Relation between quantum primitives

Theorem ([JLS18])



Theorem ([Kre21])

There can be quantum cryptography even if "P = NP"

Different type of Quantum Pseudorandomness

PRU, PRFS, PRS, 1PRS, EFI pairs, OWSG...

Different type of Quantum Pseudorandomness

PRU, PRFS, PRS, 1PRS, EFI pairs, OWSG...

Claim

Classically, all these primitives are equivalent.

Different type of Quantum Pseudorandomness

PRU, PRFS, PRS, 1PRS, EFI pairs, OWSG...

Claim

Classically, all these primitives are equivalent.

In the quantum setting however...

The Landscape of Quantum Assumptions

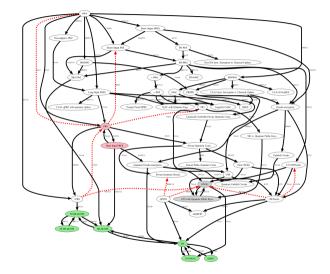
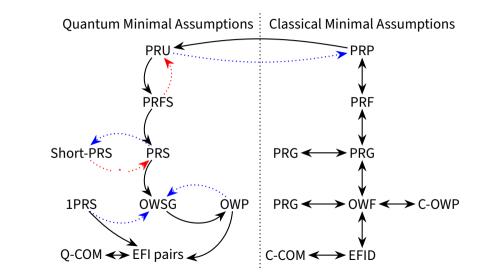


Figure: https://sattath.github.io/microcrypt-zoo/

The Landscape of Quantum Assumptions



There exists an oracle \mathcal{O} relative to which PRFSs exist, but PRUs do not.

There exists an oracle \mathcal{O} relative to which PRFSs exist, but PRUs do not.

PRFSs are a natural generalization of PRSs.

PRUs are unitaries that are indistinguishable from Haar-random unitaries.

There exists an oracle \mathcal{O} relative to which PRFSs exist, but PRUs do not.

- PRFSs are a natural generalization of PRSs.
- PRUs are *unitaries* that are indistinguishable from Haar-random *unitaries*.

$$\mathcal{O} = (\begin{array}{ccc} \mathcal{O}_1 & , & \mathcal{O}_2 \\ & & & \\ \exists \mathsf{PRFS} & & \nexists \mathsf{PRU} \end{array})$$

Common Haar Function-like State Oracle

The Common Haar Function-like State Oracle (CHFS oracles) with length ℓ is a family of unitaries $\{S_x\}_{x \in \{0,1\}^*}$ such that:

The Common Haar Function-like State Oracle (CHFS oracles) with length ℓ is a family of unitaries $\{S_x\}_{x \in \{0,1\}^*}$ such that:

$$S_x: egin{cases} |0
angle \mapsto |\phi_x
angle \,, \ |\phi_x
angle \mapsto |0
angle \,, \ |\psi
angle \mapsto |\psi
angle \,, & ext{if } |\psi
angle
otin ext{span}(|0
angle \,, |\phi_x
angle), \end{cases}$$

where $|\phi_x\rangle$ is a predetermined Haar-random state of length $\ell(|x|)$.

The Common Haar Function-like State Oracle (CHFS oracles) with length ℓ is a family of unitaries $\{S_x\}_{x \in \{0,1\}^*}$ such that:

$$S_x: egin{cases} |0
angle \mapsto |\phi_x
angle \,, \ |\phi_x
angle \mapsto |0
angle \,, \ |\psi
angle \mapsto |\psi
angle \,, & ext{if } |\psi
angle
otin ext{span}(|0
angle \,, |\phi_x
angle), \end{cases}$$

where $|\phi_x\rangle$ is a predetermined Haar-random state of length $\ell(|x|)$.

Claim

PRFSs exist relative to $\mathcal{O}_1 =$ the CHFS oracles.

The Common Haar Function-like State Oracle (CHFS oracles) with length ℓ is a family of unitaries $\{S_x\}_{x \in \{0,1\}^*}$ such that:

$$S_x: egin{cases} |0
angle \mapsto |\phi_x
angle \,, \ |\phi_x
angle \mapsto |0
angle \,, \ |\psi
angle \mapsto |\psi
angle \,, & ext{if } |\psi
angle
otin ext{span}(|0
angle \,, |\phi_x
angle), \end{cases}$$

where $|\phi_x\rangle$ is a predetermined Haar-random state of length $\ell(|x|)$.

Claim

PRFSs exist relative to $\mathcal{O}_1 =$ the CHFS oracles.

Now let's rule out PRUs!

Definition (Pseudorandom unitaries [JLS18])

A keyed family of *n*-qubit unitaries $\{U_k\}_{k \in \{0,1\}^{\lambda}}$ is *pseudorandom* if the following two conditions hold:

Definition (Pseudorandom unitaries [JLS18])

A keyed family of *n*-qubit unitaries $\{U_k\}_{k \in \{0,1\}^{\lambda}}$ is *pseudorandom* if the following two conditions hold:

1. Efficient generation. There is a QPT algorithm *G* such that, for any state $|\psi\rangle$:

 $G_{\lambda}(k,\ket{\psi}) = U_k\ket{\psi}$.

Definition (Pseudorandom unitaries [JLS18])

A keyed family of *n*-qubit unitaries $\{U_k\}_{k \in \{0,1\}^{\lambda}}$ is *pseudorandom* if the following two conditions hold:

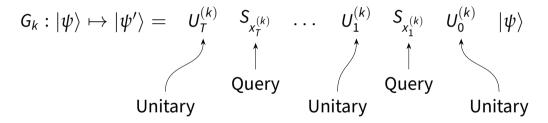
1. Efficient generation. There is a QPT algorithm *G* such that, for any state $|\psi\rangle$:

$$G_{\lambda}(k,\ket{\psi}) = U_k\ket{\psi}$$
 .

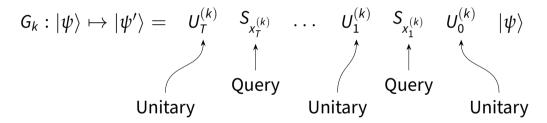
2. Pseudorandomness. For any QPT adversary A, we have:

$$\left| \Pr_{k \leftarrow \{0,1\}^{\lambda}} \left[\mathcal{A}^{U_k} \left(\mathbf{1}^{\lambda} \right) = \mathbf{1} \right] - \Pr_{V \leftarrow \mu_{2^n}} \left[\mathcal{A}^{V} \left(\mathbf{1}^{\lambda} \right) = \mathbf{1} \right] \right| \le \mathsf{negl}(\lambda)$$

By contradiction, consider the PRU algorithm $\{G_k\}_{k \in \{0,1\}^*}$:



By contradiction, consider the PRU algorithm $\{G_k\}_{k \in \{0,1\}^*}$:



We assume there is no ancilla. (general case is WIP) 😬

Lemma (Swap test)

The swap test on input $(|\sigma
angle$, |
ho
angle) outputs 1 with probability

$$rac{1+|\left\langle
ho|\sigma
ight
angle |^{2}}{2}$$
,

in which case we say that it passes the swap test.

Input V: either one of $\{G_k\}$ or a truly Haar random unitary.

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. For all k:

- > We compare V with G_k , using swap tests.
- ➤ If they are close, output 1.

Output 0.

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. For all k:

- > We compare V with G_k , using swap tests.
- ➤ If they are close, output 1.

Output 0.

▶ There are $O(2^n)$ operations, but \mathcal{O}_2 can make it possible

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. For all k:

- > We compare V with G_k , using swap tests.
- ➤ If they are close, output 1.

Output 0.

- ▶ There are $O(2^n)$ operations, but O_2 can make it possible
- > But here, \mathcal{O}_2 will be dependant of \mathcal{O}_1 , which is bad for the existence of PRFS! \mathfrak{V}

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. For all k:

- > We compare V with G_k , using swap tests.
- ➤ If they are close, output 1.

Output 0.

- ▶ There are $O(2^n)$ operations, but O_2 can make it possible
- > But here, \mathcal{O}_2 will be dependant of \mathcal{O}_1 , which is bad for the existence of PRFS! \mathfrak{D}
- > We will approximate G_k without querying \mathcal{O}_1 , and \mathcal{O}_2 will be independent of $\mathcal{O}_1 \mathfrak{S}$

Claim

For any state $|\psi
angle$ independent from the oracle,

 $S_x \ket{\psi} pprox \ket{\psi}$.

Claim

For any state $|\psi
angle$ independent from the oracle,

$$S_{x}\ket{\psi}pprox \ket{\psi}$$
 .

Therefore, one may argue that

$$\begin{aligned} G_k \ket{\psi} &= U_T^{(k)} \cdot S_{x_T^{(k)}} \cdot U_{T-1}^{(k)} \cdot \ldots \cdot U_1^{(k)} \cdot S_{x_1^{(k)}} \cdot U_0^{(k)} \ket{\psi} \\ &\approx U_T^{(k)} \cdot U_{T-1}^{(k)} \cdot \ldots \cdot U_1^{(k)} \cdot U_0^{(k)} \ket{\psi}. \end{aligned}$$

Claim

For any state $|\psi
angle$ independent from the oracle,

$$S_x \ket{\psi} pprox \ket{\psi}$$
.

Therefore, one may argue that

$$G_{k} |\psi\rangle = U_{T}^{(k)} \cdot S_{x_{T}^{(k)}} \cdot U_{T-1}^{(k)} \cdot \ldots \cdot U_{1}^{(k)} \cdot S_{x_{1}^{(k)}} \cdot U_{0}^{(k)} |\psi\rangle \approx U_{T}^{(k)} \cdot U_{T-1}^{(k)} \cdot \ldots \cdot U_{1}^{(k)} \cdot U_{0}^{(k)} |\psi\rangle.$$

However, the loss is proportional to $1/2^{|x|}$

Lemma (Informal Tomography Lemma)

Let $|\psi\rangle$ be a quantum state of dimension n. Given $O(2^n)$ copies of $|\psi\rangle$, there exists an algorithm that can approximate $|\psi\rangle$ with negligible error.

Lemma (Informal Tomography Lemma)

Let $|\psi\rangle$ be a quantum state of dimension n. Given $O(2^n)$ copies of $|\psi\rangle$, there exists an algorithm that can approximate $|\psi\rangle$ with negligible error.

We define:

$$\tilde{S}_{x} = \begin{cases} S'_{x}, & \text{for small } |x|, \\ I, & \text{for large } |x|. \end{cases}$$
$$F_{k} : |\psi\rangle \mapsto U_{T}^{(k)} \cdot \tilde{S}_{x_{T}^{(k)}} \cdot U_{T-1}^{(k)} \cdot \dots \cdot U_{1}^{(k)} \cdot \tilde{S}_{x_{1}^{(k)}} \cdot U_{0}^{(k)} |\psi\rangle,$$

Lemma (Informal Tomography Lemma)

Let $|\psi\rangle$ be a quantum state of dimension n. Given $O(2^n)$ copies of $|\psi\rangle$, there exists an algorithm that can approximate $|\psi\rangle$ with negligible error.

We define:

$$\tilde{S}_{x} = \begin{cases} S'_{x}, & \text{for small } |x|, \\ I, & \text{for large } |x|. \end{cases}$$

$$F_{k} : |\psi\rangle \mapsto U_{T}^{(k)} \cdot \tilde{S}_{x_{T}^{(k)}} \cdot U_{T-1}^{(k)} \cdot \dots \cdot U_{1}^{(k)} \cdot \tilde{S}_{x_{1}^{(k)}} \cdot U_{0}^{(k)} |\psi\rangle, \\ F_{k} |\psi\rangle \approx G_{k} |\psi\rangle.$$

Input *V*: either one of $\{G_k\}$ or a truly Haar random unitary.

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. Informally: we compare V with all our simulations F_k of the G_k .

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. Informally: we compare V with all our simulations F_k of the G_k .

The attack

Prepares $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$ for some large *M* and defines:

P_k: on input Φ = (|ρ⟩ ⊗ V |ρ⟩)^{⊗M}, it applies (*F_k* ⊗ Id)^{⊗M}, applies *M* swap tests on each copy; if sufficiently many copies pass the swap test, it returns 1. Otherwise it returns 0.

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. Informally: we compare V with all our simulations F_k of the G_k .

The attack

Prepares $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$ for some large *M* and defines:

 P_k : on input $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$, it applies $(F_k \otimes Id)^{\otimes M}$, applies *M* swap tests on each copy; if sufficiently many copies pass the swap test, it returns 1. Otherwise it returns 0.

It works

We can show that

- > if $V = G_k$, P_k returns 1 with high probability,
- > if V is a Haar random unitary, P_k returns almost always 0.

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. Informally: we compare V with all our simulations F_k of the G_k .

The attack

Prepares $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$ for some large *M* and defines:

 P_k : on input $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$, it applies $(F_k \otimes Id)^{\otimes M}$, applies *M* swap tests on each copy; if sufficiently many copies pass the swap test, it returns 1. Otherwise it returns 0.

It works

We can show that

- ▶ if $V = G_k$, P_k returns 1 with high probability,
- > if V is a Haar random unitary, P_k returns almost always 0.

This can be done with a QPSPACE oracle! (Quantum OR Lemma) 🤲

Input V: either one of $\{G_k\}$ or a truly Haar random unitary. Informally: we compare V with all our simulations F_k of the G_k .

The attack

Prepares $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$ for some large *M* and defines:

 P_k : on input $\Phi = (|\rho\rangle \otimes V |\rho\rangle)^{\otimes M}$, it applies $(F_k \otimes Id)^{\otimes M}$, applies *M* swap tests on each copy; if sufficiently many copies pass the swap test, it returns 1. Otherwise it returns 0.

It works

We can show that

- > if $V = G_k$, P_k returns 1 with high probability,
- > if V is a Haar random unitary, P_k returns almost always 0.

This can be done with a QPSPACE oracle! (Quantum OR Lemma) $\stackrel{\bullet}{\leftrightarrow}$ Relative to $\mathcal{O} = (\mathcal{O}_1, \mathcal{O}_2) = (CHFS, QPSPACE)$, we have PRUs but not PRFSs!

Other results

Theorem

Assuming a conjecture is true,

$\exists short-PRFS \Rightarrow \exists PRG (with negligible correctness)$

unless BQP \neq QMA.

Other results

Theorem

Assuming a conjecture is true,

$\exists short-PRFS \Rightarrow \exists PRG (with negligible correctness)$ unless BQP \neq QMA.

This complements a previous result that shows that PRFSs can be used to construct PRGs with $1/poly(\cdot)$ correctness error.

Assuming a conjecture is true,

$\exists short-PRFS \Rightarrow \exists PRG (with negligible correctness)$ unless BQP \neq QMA.

This complements a previous result that shows that PRFSs can be used to construct PRGs with $1/\text{poly}(\cdot)$ correctness error.

Theorem

Assuming the same conjecture is true,

$\exists short-PRS \Rightarrow \exists long-PRS (with pure generation)$

Assuming a conjecture is true,

$\exists short-PRFS \Rightarrow \exists PRG (with negligible correctness)$ unless BQP \neq QMA.

This complements a previous result that shows that PRFSs can be used to construct PRGs with $1/\text{poly}(\cdot)$ correctness error.

Theorem

Assuming the same conjecture is true,

$\exists short-PRS \Rightarrow \exists long-PRS (with pure generation)$

This complements a previous result that shows that there exits an oracle relative which PRSs exist but short PRSs do not.

- Oracle separation of PRUs and PRFSs (There is still some work left to finish our proof!)
- Conditionned oracle separation of short-PRSs and PRSs.
- > Also, there is still a lot left to do to fully grasp the strength of quantum assumptions.

- Oracle separation of PRUs and PRFSs (There is still some work left to finish our proof!)
- Conditionned oracle separation of short-PRSs and PRSs.
- > Also, there is still a lot left to do to fully grasp the strength of quantum assumptions.

Thank you for your attention!

The tools

Lemma (Quantum OR lemma)

Let $\{\Pi_i\}_{i \in [N]}$ be POVMs. Let $0 < \varepsilon < 1/2$ and $\delta > 0$. Let Ψ be a quantum state such that either

- **1.** there exists $i \in [N]$ such that $Tr[\Pi_i \Psi] \ge 1 \varepsilon$, or
- **2.** for all $i \in [N]$, $Tr[\Pi_i \Psi] \leq \delta$.

Then, there is a quantum circuit C, such that in case i)

$$\Pr(\mathbf{1} \leftarrow C(\Psi)) \ge \frac{(1-\varepsilon)^2}{7}$$

and in case ii),

$$\Pr(\mathbf{1} \leftarrow C(\Psi)) \leq 4N\delta.$$

The circuit C can be implemented in QPSPACE.

R. Impagliazzo.

A personal view of average-case complexity.

In Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147, 1995.

🔋 Russell Impagliazzo and Steven Rudich.

Limits on the provable consequences of one-way permutations.

In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

Zhengfeng Ji, Yi-Kai Liu, and Fang Song.

Pseudorandom quantum states.

In Hovav Shacham and Alexandra Boldyreva, editors, *CRYPTO 2018, Part III*, volume 10993 of *LNCS*, pages 126–152. Springer, Cham, August 2018.