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Introduction

e Main goal: Efficient and secure modular arithmetic

e PMNS: Polynomial Modular Number System
e Main characteristic: Elements are polynomials in the PMNS

o Additional characteristic: PMNS is a redundant system
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Introduction

e Main goal: Efficient and secure modular arithmetic

e PMNS: Polynomial Modular Number System
e Main characteristic: Elements are polynomials in the PMNS

o Additional characteristic: PMNS is a redundant system

Improve and extend PMNS generation

Study and control the redundancy in the PMNS

Perform equality test within the system

Presentation based on: https://eprint.iacr.org/2023/1231
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@ PMNS and its arithmetic
© Redundancy in the PMNS
© Equality test in the PMNS

@ Bonus: What else?
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PMNS: Polynomial Modular Number System

Let p > 3, be an odd integer. We want to represent elements of Z/pZ.

A PMNS is a subset of Z[X], defined by a tuple B = (p, n, v, p, E). J

e n € N: elements are represented with n coefficients.
e Y E€Z/pZ: T € B represents the integer t = T () (mod p)
e pEN: ||T|oo <p, VT €B

o E: a monic polynomial € Z,[X], such that E(y) =0 (mod p).

where 0 <y < pand p = /p.
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Example: B= (p, n, v, p, E) = (19, 3, 7,2, X3 —1)

0 1 2 3 4
0 1 ==X | B =X=1 X2 - X
5 6 7 8 9

X2—-X+1 X -1 X X+1 —X?+1
10 11 12 13 14

32 =1 X2 X241 —X+1 -X?+X-1
15 16 17 18

X2+ X | = XP4X4+1| XP4+X-1 =il

(X2 —1) = 10g, since 72 — 1 = 48 = 10 (mod 19).
A redundant system: (=X — 1) = 113.

(X2 + X +1)=0g.




Main operations and reductions

Let A, B € B. There are two main operations:

e Addition: S=A+ B
e Multiplication: C=AXx B J
We have:

o deg(S) < n, but [|S]|ec < 2p
e deg(C) <2n—1, and ||C||ls < np?

So, we need to:

e reduce deg(C) = External reduction

e reduce ||Cl|« and ||S||xx = Internal reduction
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, y=7, p=2, E(X):X3—1.

o Let a=8; A= ap, with A(X)=X+1
o Let b=12; B = bg, with B(X) = X? +1 J
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, y=7, p=2, E(X):X3—1.

o Let a=8; A= ap, with A(X)=X+1
o Let b=12; B = bg, with B(X) = X? +1

e C=AB=X3+X?+X+1
e C(7)mod19=1=ab (mod 19) =1, but C ¢ B
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, y=7, p=2, E(X):X3—1.

o Let a=8; A= ap, with A(X)=X+1
o Let b=12; B = bg, with B(X) = X? +1

e C=AB=X3+X2+X+1

e C(7)mod19=1=ab (mod 19) =1, but C ¢ B
e R=Cmod E=X2+X+2

e R(7) mod 19 =1 and deg(R) < 3, but R ¢ B.
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Multiplication example for B = (19, 3, 7, 2, X3 — 1)

Remember that: p=19, n=3, v=7, p=2, E(X):X3—1.

o Let a=8; A= ap, with A(X)=X+1
o Let b=12; B = bg, with B(X) = X2 +1

e C=AB=X3+X?+X+1
e C(7)mod19=1=ab (mod 19) =1, but C ¢ B

e R=Cmod E=X?>+X+2
e R(7) mod 19 =1 and deg(R) < 3, but R ¢ B.

Internal reduction:

o Let T(X)= X2+ X+1.
T(7)=0 (mod19)and S=R-T=1€B

e How to find such a polynomial T7?
= the internal reduction process
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The internal reduction

Let R € Z,—1[X], with possibly ||R]|s = p-

find S € Z,_1[X], such that: ||S|lcc < p and S(7) = R(7y) (mod p)

Equivalent to compute:
T € Zp—1[X], such that: T(y) =0 (mod p) and ||S]|ec = [|R — T|loo < p
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The internal reduction

Let R € Z,—1[X], with possibly ||R]|s = p-

find S € Z,_1[X], such that: ||S|lcc < p and S(7) = R(7y) (mod p)

Equivalent to compute:

T € Zp—1[X], such that: T(y) =0 (mod p) and ||S]|ec = [|R — T|loo < p

Many methods to do this reduction DDEMV'19:

o Montgomery-like method DDEMV’19
o Barrett-like method
o Babai-based approaches

e ‘Direct’ approaches
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Internal reduction: the Montgomery-like approach

By Christophe Negre and Thomas Plantard (2008).

Introduces an integer ¢ and two polynomials M, M" € Z,_1[X], such that:
o« p>2
« M(7) =0 (mod p)
e M' = —M~1 mod (E, ¢)

v

1: Input : R € Zp_1[X]

Output : S € Z,_1[X], with S(7) = R(7)¢~! (mod p)
Q + R x M'mod (E, ¢)

T+ Q x Mmod E

S+ (R+T)/¢ # exact divisions

return S

SO
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Generation of M: a lattice of zeros

To a PMNS B, one associates the following lattice:
Lp={A€ Zn[X] | A(y) =0 (mod p)}

e Lp is a n-dimensional full-rank Euclidean lattice;

e a basis of Lp is:

p 00 ... 0 0\p
t1 1 0 ... 0O — X+t

B b 01 ... 0O <_X2_|_1_-2
t > 0 0 1 0|« X" 2+t
tb1 00 ... 0 1)/« X"1+tp

where t; = (—y)' mod p.

Note: each line i of B represents the polynomial X' + t;.
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Generation of M: a lattice of zeros

e Let W be a reduced basis of Lz;
e iie. W=LLL(B) = BKZ(B) = HKZ(B), ... J

Let's assume that ¢ is a power of two (best choice for efficiency).

Fundamental result: (Didier, Dosso, Véron, JCEN-2020)

There always exists (o, ...,an—1) € {0,1}", such that:

M = 27:—01 aiW; and M’ = —M~1 mod (E, ¢) exists.

Note:
e we need Resultant(E, M) to be odd for M’ to exist.

e we take p & ||M||oc, hence a reduced basis W.

So, to find a suitable polynomial M, a search is done in a space of size 2".J
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Application to cryptographic examples

Classical cryptography
e RSA 2048-4096 bits;

e ECC: scalar multiplication, pairings 256-512 bits.
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Application to cryptographic examples

Classical cryptography

e RSA 2048-4096 bits;
e ECC: scalar multiplication, pairings 256-512 bits.

SQiSign 256-512 bits.
CSidh 256-512 bits.

Racoon g = (2% — 218 - 1) x (225 — 218 1 1)
Dilithium 23 bits...
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Software implementation

Brainpool, pairings DDE'25

Processor: Intel 11th Gen Intel Core /5-1135G7©@2.40GHz x 8
Memory: 16 GiB of RAM
OS: Ubuntu 20.04.6 LTS (64 bits)

Our C implementations of PMNS can be found in this GitHub repository:

https://github.com/PMNS-APPLICATION/

13/48
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Software implementation: brainpool

Table: Clock cycle number comparisons of Modular Multiplication for brainpool
curve moduli.

PMNS OpenSSL
Modulus Bloc-Mont | Std
brainpoolP256r1 177 181 718
brainpoolP384r1 267 294 1071
brainpoolP512r1 405 347 1385
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Software implementation: pairings

Table: Clock cycle number comparisons of Modular Multiplication for
pairing-friendly base fields

PMNS GMP
Modulus Bloc-Mont | Low-Ivl | Std
KSS16-330 225 248 494 541
BN-462 349 368 709 762
BLS12-381 275 249 496 547
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Hardware implementation

FPGAs devices : quick prototyping and design space exploration
Modern Xilinx Ultrascale FPGA family used in [8]
DSP48E2 arithmetic accelerator components feature:

@ A 17x17 bits multiplier
@ A 3-input 48-bit adder which can be used to add the result of a
multiplication, accumulate data (possibly right shifted by 17 bits) and
add external data in a single clock cycle
w = 17 bits slicing of operands.
Primary goals: performance and scalability to any number of coefficients
and size of coefficients.
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Hardware implementation

A, B: polynomial blocks such that ||A||e < 217 and ||B||eo < 2, N =5

Target | Cycle Coefficients

X0 X1 X? X3 X4

A Ao Ar Ar As Ay

B By By By Bs Ba

Congested Scheduling
A B[E]| 1 Ao By T—AoBs AoBs AoBs | AgBs
2 +AABy | + ABy | + AB | + AiBy| +A1Bs
Relaxed Scheduling (N odd)

A B[E]| 1 AsBo [N \A3B3 ABi | \A4Bi | AB,
2 | +0ABs | + ApBy | + 03By | + A1BY| + AsBy
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Hardware implementation

Design Freq |Latency| DSP/LUT/FF | Time DSP/LUT/FF
parameters (MHz)| (cc) (us) | AT (resource.us)
width = 256
CAOD2C1E [8]| 625 140 16/1759/3365 |0.224 3.58/394 /754
AMNS [3] | 200 | 33 120/2728/- | 0.165 19.8/450,/-
AMNS [3] | 194 | 47 901/1718/-  |0.242 22.0/415/-
RNS [1] : - 248/9450/-  [0.0852]  21.13/805/-
|N=3,s=6| 625 | 111 | 18/4156/5145 |0.178] 3.20/738/914 |
width = 512
CAOD2CI1E [8]| 625 275 31/3443/6602 | 0.440 13.6/1510/2900
AMNS [3] | 162 | 33 188/29985/- |0.204|  38.4/6120/-

AMNS [3] 176/37138/- | 0.258 45.4/9580/-

width = 2048
CAOD2C1E [8]| 625 | 1085 | 121/13487/22602 | 1.74 | 210/23400/39000

width = 4096
CAOD2C1E [8]| 625 | 2174 | 242/26978/44806 | 3.48 | 842/93800/156000
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Hardware implementation ENPV'24

Open-Source project

https://github.com/LOUISNOYEZ/AMNS_MM
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A summary: the pro

« High parallelization capability (no carry propagation nor conditional
branching)

o It is always possible to generate efficient PMNS given any prime:
Efficient modular operations using the adapted modular number
system (JCEN-2020)

e PMNS has been proven competitive for both hardware and software
implementations:
e PMNS for Efficient Arithmetic and Small Memory Cost
(TETC-2022)

e Modular Multiplication in the AMNS representation: Hardware
Implementation (SAC-2024)

e PMNS is redundant: it allows easy and efficient randomisation. See:
Randomization of Arithmetic over Polynomial Modular Number
System (ARITH-26/2019).
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https://hal.science/hal-02486345/
https://hal.science/hal-02486345/
https://hal.science/hal-03768546/document
https://dumas.ccsd.cnrs.fr/IMATH/hal-04691484v1
https://dumas.ccsd.cnrs.fr/IMATH/hal-04691484v1
https://hal.science/hal-02099713v1/file/Randomisation_of_Arithmeticover_Polynomial_Modular_Number_System-20.pdf
https://hal.science/hal-02099713v1/file/Randomisation_of_Arithmeticover_Polynomial_Modular_Number_System-20.pdf

A summary: the cons

When n becomes big:

e The generation of the parameter M could be very long;
the search is done in a space of size 2".

PMNS is redundant:

e More memory is needed to represent elements (compared to a
non-redundant system).

o Trivial equality test is not possible.
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Our goals in the remaining:

Define and control redundancy in the PMNS.

Make equality test possible within the PMNS
(even when the system is chosen very redundant).
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© Redundancy in the PMNS
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Redundancy in the PMNS: first attempt to secure against
SCA

A B

X
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Redundancy in the PMNS: first attempt to secure against
SCA

Reductions are guilty

The internal and external reductions are well defined, so well that we
define a canonical representation in PMNS.
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Redundancy in the PMNS: first attempt to secure against
SCA

Reductions are guilty

The internal and external reductions are well defined, so well that we
define a canonical representation in PMNS.

The end of PMNS vs SCA?
Of course not!
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Redundancy in the PMNS

e It is not precisely defined.

e We can only choose the minimum number of distinct representations
for Z/pZ elements in the PMNS.
See: Randomization of Arithmetic over PMNS (ARITH-26).

v

Precisely control the redundancy for:

e smaller memory requirement to represent element,

e a more reliable randomisation.

A new tool: the set D;

S
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https://hal.science/hal-02099713v1/file/Randomisation_of_Arithmeticover_Polynomial_Modular_Number_System-20.pdf

Sub-lattice L of zeros: some fundamental regions

Let G be a basis of L.

Let H be the fundamental domain of L:

n—1

H={teR"| t:Zu;gi and 0 < p; <1}
i=0

And H' be the fundamental region:

n—1
H ={teR" | tzz,u,-g,- and —
i=0

1
<Mi<§}

N =

o If V €H, then ||V||oo < ||g||1

o If Ve, then ||V]o < 3|G]1-
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A representation of H and H’', for n = 2

G1 g1

Figure: H Figure: H'
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D;j: the Domain j

Let j > 1 be an integer.

We define the set D; as:

n—1
Dj={teR" | t:zﬂigi and —j < pj <j}
i—0

This can be seen as an extension of the fundamental region H'.

If A€ D;, then: ||Allo <jlIG]1. l
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A representation of D,, for n = 2

Yo
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Domain Dy vs D5, for n = 2

Y

Yo
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A representation of H', D1, D, and Ds,

Y
] Yo
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Redundancy in the PMNS

Fundamental result:

The set D; contains exactly (2/)" times the set .

Property:
If £ = Lp, then each a € Z/pZ has exactly one representation in 7.
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Redundancy in the PMNS

Fundamental result:
The set D; contains exactly (2/)" times the set .

Property:
If £ = Lp, then each a € Z/pZ has exactly one representation in 7.

Consequence:
If £L = Lg, then:

each a € Z/pZ has exactly (2/)" representation in D;.

35/48



Redundancy in the PMNS

Let a € Z/pZ.

The set of representations
Let's define the set R;(a) as:

Rj(a) ={AeD;NZ" | a=A(y) (mod p)}
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Redundancy in the PMNS

Let a € Z/pZ.

The set of representations

Let's define the set R;(a) as:

Rj(a) ={AeD;NZ" | a=A(y) (mod p)}

| \

Property:
If L= Lpg, then:
#Rj(a) = (2))"

In particular, #R1(a) = 2".

Easy to compute: the representations of zeros in D;

It corresponds to the lattice points in D;.

Rj(O) = {(ao, .. .,a,,,l)g, with a; € Z N [—j,_][}
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Redundancy in the PMNS

Let us assume that £ = Lpg.
Let a € Z/pZ. If Ais its unique representation in H, then:

Ri(a) = {A+J | JeR;0)}.

Questions:
How to compute a representation in H?

| N\

How to make PMNS elements live in a set D;?

Let us first focus on D;.

D
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An interesting comparison: D; vs H

Comparison 1:
If L= Lpg, then:
each a € Z/pZ has exactly one representation in 7.

each a € Z/pZ has exactly 2" representation in D;.

| \

Comparison 2:
If Ae H, then ||Allc < [|G]|1.
If A€ Dy, then [|Allo <G ]1-

So, same memory requirement to represent their elements.
But, different redundancies.
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Internal reduction to D;

Let A€ Zn_l[X], with A = (OC0,0C]_, .. .,Oén_l)g.

Fundamental property:
If Vie {0,...,n—1}, —¢ < «; <0, then:

GMont-like(A) € D;.

How to make all the coordinates of an element negative?

Using the translation vector. \
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The translation vector (a simplified version)

Let ABeBand C=AXx BmodE.

C = ag, with a = (ag, ..., an—1) € R" such that:
lallo < w(p = 121G 1 -

o Let u=[w(p—1)2G71].

e The translation vector 7 is defined as follows:

T=(-u,...,—u)G.

Important: note that 7 € L.
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The translation vector (a simplified version)

Let ABeBand C=AXx BmodE.

C = ag, with a = (ag, ..., an—1) € R" such that:
lallo < w(p = 121G 1 -

o Let u=w(p—1)2|G~ ],
e The translation vector 7 is defined as follows:

T=(-u,...,—u)G.

Important: note that 7 € L.

Consequence:
° C+T:6§, with —2u < 3; < 0.

e Thus, if ¢ > 2u, then GMont-like(C + 7)) € D;.
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The translation vector: example for ¢ = 4, with u =2

g1

| Go
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The translation vector: example for ¢ = 4, with u = 2

g1

[ ; Yo
...7— L] e e e e o
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About the bounds

Note: For simplicity, the parameter § for ‘free’ additions is not included. See

https://eprint.iacr.org/2023/1231 for full formulas and details.

Old bounds on p and ¢:

WV

2“g||17
2wp.

P
¢

V

New bounds for reduction in Dy, using T

p=IGlL+1,
¢ =2u,

with u = [w||G|12IG~1||1].
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© Equality test in the PMNS
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Equality test in the PMNS

Let A,B € B.

Check if A(v) = B(y) (mod p), without conversion out of the PMNS.

Fundamental property:
Let A € L, such that: A=aG. So a € Z".
If Vi e {0,....,n—1}, —¢ < a; <0, then:

GMont-like(A) =0
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Equality test in the PMNS

We assume that ¢ > 2u > 4, with u = [w(p — 1)?[|G71||1].

If A,B € B, then: A— B =vG, with ||[V]|s <2 < ¢.

So, the previous property applies.

The check:
A=B <= GMont-like((A—B)+7)=0

Remark:

| A\

Works regardless of PMNS redundancy.

Does not require that £ = Lp.
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Implementations

Codes to generate PMNS, study its redundancy, perform equality test
(with examples) and much more are available at:

https://github.com/arithPMNS /PMNS-and-redundancy

The associated GitHub account also contains repositories that provide C code generators
from PMNS parameters.
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@ Bonus: What else?
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Open problems

PMNS and Side Channel attacks.
Security proof of PMNS randomisation.

Statistical analysis of the randomisation operations
PMNS for PQC

Improve software and hardware implementations

= The answers during Wrach 2027 organized by the ANR MAERA
project?
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