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Introduction

Context:

• Main goal: Efficient and secure modular arithmetic

• PMNS: Polynomial Modular Number System

• Main characteristic: Elements are polynomials in the PMNS

• Additional characteristic: PMNS is a redundant system

Goals:

• Improve and extend PMNS generation

• Study and control the redundancy in the PMNS

• Perform equality test within the system

Presentation based on: https://eprint.iacr.org/2023/1231
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Plan

1 PMNS and its arithmetic

2 Redundancy in the PMNS

3 Equality test in the PMNS

4 Bonus: What else?
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PMNS: Polynomial Modular Number System

Let p > 3, be an odd integer. We want to represent elements of Z/pZ.

A PMNS is a subset of Z[X ], defined by a tuple B = (p, n, γ, ρ,E ).

• n ∈ N: elements are represented with n coefficients.

• γ ∈ Z/pZ: T ∈ B represents the integer t = T (γ) (mod p)

• ρ ∈ N: ‖T‖∞ < ρ, ∀T ∈ B

• E : a monic polynomial ∈ Zn[X ], such that E (γ) ≡ 0 (mod p).

where 0 < γ < p and ρ ≈ n
√
p.
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Example: B = (p, n, γ, ρ, E ) = (19, 3, 7, 2, X 3 − 1)

0 1 2 3 4

0 1 −X 2 − X + 1 X 2 − X − 1 X 2 − X

5 6 7 8 9

X 2 − X + 1 X − 1 X X + 1 −X 2 + 1

10 11 12 13 14

X 2 − 1 X 2 X 2 + 1 −X + 1 −X 2 + X − 1

15 16 17 18

−X 2 + X −X 2 + X + 1 X 2 + X − 1 −1

(X 2 − 1) ≡ 10B, since 72 − 1 = 48 ≡ 10 (mod 19).

A redundant system: (−X − 1) ≡ 11B.

(X 2 + X + 1) ≡ 0B.
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Main operations and reductions

Let A,B ∈ B. There are two main operations:

• Addition: S = A + B

• Multiplication: C = A× B

We have:

• deg(S) < n, but ‖S‖∞ < 2ρ

• deg(C ) < 2n − 1, and ‖C‖∞ < nρ2

So, we need to:

• reduce deg(C ) ⇒ External reduction

• reduce ‖C‖∞ and ‖S‖∞ ⇒ Internal reduction
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Multiplication example for B = (19, 3, 7, 2, X 3 − 1)

Remember that: p = 19, n = 3, γ = 7, ρ = 2, E (X ) = X 3 − 1.

• Let a = 8; A ≡ aB, with A(X ) = X + 1

• Let b = 12; B ≡ bB, with B(X ) = X 2 + 1

• C = AB = X 3 + X 2 + X + 1

• C (7) mod 19 = 1 = ab (mod 19) = 1, but C /∈ B

• R = C mod E = X 2 + X + 2

• R(7) mod 19 = 1 and deg(R) < 3, but R /∈ B.

Internal reduction:

• Let T (X ) = X 2 + X + 1.
T (7) ≡ 0 (mod 19) and S = R − T = 1 ∈ B

• How to find such a polynomial T?
⇒ the internal reduction process

7 / 48



Multiplication example for B = (19, 3, 7, 2, X 3 − 1)

Remember that: p = 19, n = 3, γ = 7, ρ = 2, E (X ) = X 3 − 1.

• Let a = 8; A ≡ aB, with A(X ) = X + 1

• Let b = 12; B ≡ bB, with B(X ) = X 2 + 1

• C = AB = X 3 + X 2 + X + 1

• C (7) mod 19 = 1 = ab (mod 19) = 1, but C /∈ B

• R = C mod E = X 2 + X + 2

• R(7) mod 19 = 1 and deg(R) < 3, but R /∈ B.

Internal reduction:

• Let T (X ) = X 2 + X + 1.
T (7) ≡ 0 (mod 19) and S = R − T = 1 ∈ B

• How to find such a polynomial T?
⇒ the internal reduction process

7 / 48



Multiplication example for B = (19, 3, 7, 2, X 3 − 1)

Remember that: p = 19, n = 3, γ = 7, ρ = 2, E (X ) = X 3 − 1.

• Let a = 8; A ≡ aB, with A(X ) = X + 1

• Let b = 12; B ≡ bB, with B(X ) = X 2 + 1

• C = AB = X 3 + X 2 + X + 1

• C (7) mod 19 = 1 = ab (mod 19) = 1, but C /∈ B

• R = C mod E = X 2 + X + 2

• R(7) mod 19 = 1 and deg(R) < 3, but R /∈ B.

Internal reduction:

• Let T (X ) = X 2 + X + 1.
T (7) ≡ 0 (mod 19) and S = R − T = 1 ∈ B

• How to find such a polynomial T?
⇒ the internal reduction process

7 / 48



Multiplication example for B = (19, 3, 7, 2, X 3 − 1)

Remember that: p = 19, n = 3, γ = 7, ρ = 2, E (X ) = X 3 − 1.

• Let a = 8; A ≡ aB, with A(X ) = X + 1

• Let b = 12; B ≡ bB, with B(X ) = X 2 + 1

• C = AB = X 3 + X 2 + X + 1

• C (7) mod 19 = 1 = ab (mod 19) = 1, but C /∈ B

• R = C mod E = X 2 + X + 2

• R(7) mod 19 = 1 and deg(R) < 3, but R /∈ B.

Internal reduction:

• Let T (X ) = X 2 + X + 1.
T (7) ≡ 0 (mod 19) and S = R − T = 1 ∈ B

• How to find such a polynomial T?
⇒ the internal reduction process

7 / 48



The internal reduction

Let R ∈ Zn−1[X ], with possibly ‖R‖∞ > ρ.

The Goal:

find S ∈ Zn−1[X ], such that: ‖S‖∞ < ρ and S(γ) ≡ R(γ) (mod p)

Equivalent to compute:

T ∈ Zn−1[X ], such that: T (γ) ≡ 0 (mod p) and ‖S‖∞ = ‖R − T‖∞ < ρ

Many methods to do this reduction DDEMV’19:

• Montgomery-like method DDEMV’19

• Barrett-like method

• Babäı-based approaches

• ‘Direct’ approaches
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Internal reduction: the Montgomery-like approach

By Christophe Negre and Thomas Plantard (2008).

Introduces an integer φ and two polynomials M,M ′ ∈ Zn−1[X ], such that:

• φ > 2

• M(γ) ≡ 0 (mod p)

• M ′ = −M−1 mod (E , φ)

Mont-like:

1: Input : R ∈ Zn−1[X ]

2: Output : S ∈ Zn−1[X ], with S(γ) ≡ R(γ)φ−1 (mod p)

3: Q ← R ×M ′mod (E , φ)

4: T ← Q ×M modE

5: S ← (R + T )/φ # exact divisions

6: return S
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Generation of M : a lattice of zeros

To a PMNS B, one associates the following lattice:

LB = {A ∈ Zn−1[X ] | A(γ) ≡ 0 (mod p)}

• LB is a n-dimensional full-rank Euclidean lattice;

• a basis of LB is:

B =



p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1



← p
← X + t1
← X 2 + t2

← X n−2 + tn−2
← X n−1 + tn−1

where ti = (−γ)i mod p.

Note: each line i of B represents the polynomial X i + ti .
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Generation of M : a lattice of zeros

• Let W be a reduced basis of LB;

• i.e. W = LLL(B) = BKZ (B) = HKZ (B), ...

Let’s assume that φ is a power of two (best choice for efficiency).

Fundamental result: (Didier, Dosso, Véron, JCEN-2020)

There always exists (α0, . . . , αn−1) ∈ {0, 1}n, such that:

M =
∑n−1

i=0 αiWi and M ′ = −M−1 mod (E , φ) exists.

Note:

• we need Resultant(E ,M) to be odd for M ′ to exist.

• we take ρ ≈ ‖M‖∞, hence a reduced basis W.

So, to find a suitable polynomial M, a search is done in a space of size 2n.
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Application to cryptographic examples

Classical cryptography

• RSA 2048-4096 bits;

• ECC: scalar multiplication, pairings 256-512 bits.

PQC

• SQiSign 256-512 bits.

• CSidh 256-512 bits.

• Racoon q = (224 − 218 + 1)× (225 − 218 + 1)

• Dilithium 23 bits...
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Software implementation

Brainpool, pairings DDE’25

Processor: Intel 11th Gen Intel Core i5-1135G7@2.40GHz × 8

Memory: 16 GiB of RAM

OS: Ubuntu 20.04.6 LTS (64 bits)

Our C implementations of PMNS can be found in this GitHub repository:

https://github.com/PMNS-APPLICATION/
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Software implementation: brainpool

Table: Clock cycle number comparisons of Modular Multiplication for brainpool
curve moduli.

PMNS OpenSSL

Modulus Bloc-Mont Std

brainpoolP256r1 177 181 718

brainpoolP384r1 267 294 1071

brainpoolP512r1 405 347 1385
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Software implementation: pairings

Table: Clock cycle number comparisons of Modular Multiplication for
pairing-friendly base fields

PMNS GMP

Modulus Bloc-Mont Low-lvl Std

KSS16-330 225 248 494 541

BN-462 349 368 709 762

BLS12-381 275 249 496 547
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Hardware implementation: Block slicing
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Hardware implementation
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Hardware implementation
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Hardware implementation
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Hardware implementation
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Hardware implementation ENPV’24
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A summary: the pro

• High parallelization capability (no carry propagation nor conditional
branching)

• It is always possible to generate efficient PMNS given any prime:
Efficient modular operations using the adapted modular number
system (JCEN-2020)

• PMNS has been proven competitive for both hardware and software
implementations:

• PMNS for Efficient Arithmetic and Small Memory Cost
(TETC-2022)

• Modular Multiplication in the AMNS representation: Hardware
Implementation (SAC-2024)

• PMNS is redundant: it allows easy and efficient randomisation. See:
Randomization of Arithmetic over Polynomial Modular Number
System (ARITH-26/2019).
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A summary: the cons

When n becomes big:

• The generation of the parameter M could be very long;
the search is done in a space of size 2n.

PMNS is redundant:

• More memory is needed to represent elements (compared to a
non-redundant system).

• Trivial equality test is not possible.
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Our goals in the remaining:

• Define and control redundancy in the PMNS.

• Make equality test possible within the PMNS
(even when the system is chosen very redundant).
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Redundancy in the PMNS: first attempt to secure against
SCA
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Redundancy in the PMNS: first attempt to secure against
SCA

Reductions are guilty

The internal and external reductions are well defined, so well that we
define a canonical representation in PMNS.

The end of PMNS vs SCA?

Of course not!
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Redundancy in the PMNS

Limitations:

• It is not precisely defined.

• We can only choose the minimum number of distinct representations
for Z/pZ elements in the PMNS.
See: Randomization of Arithmetic over PMNS (ARITH-26).

Motivations:

Precisely control the redundancy for:

• smaller memory requirement to represent element,

• a more reliable randomisation.

A new tool: the set Dj
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Sub-lattice L of zeros: some fundamental regions

Let G be a basis of L.

Let H be the fundamental domain of L:

H = {t ∈ Rn | t =
n−1∑
i=0

µiGi and 0 6 µi < 1}

And H′ be the fundamental region:

H′ = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − 1

2
6 µi <

1

2
}

Remarks:

• If V ∈ H, then ‖V ‖∞ < ‖G‖1.

• If V ∈ H′, then ‖V ‖∞ 6 1
2‖G‖1.
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A representation of H and H′, for n = 2

G0

G1

Figure: H

G0

G1

Figure: H′
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Dj : the Domain j

Let j > 1 be an integer.

We define the set Dj as:

Dj = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − j 6 µi < j}

This can be seen as an extension of the fundamental region H′.

Remark

If A ∈ Dj , then: ‖A‖∞ 6 j‖G‖1.
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A representation of D2, for n = 2

G0

G1
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Domain D1 vs D2, for n = 2

G0

G1
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A representation of H′, D1, D2 and D3, for n = 2

G0

G1
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Redundancy in the PMNS

Fundamental result:

The set Dj contains exactly (2j)n times the set H.

Property:

If L = LB, then each a ∈ Z/pZ has exactly one representation in H.

Consequence:

If L = LB, then:

each a ∈ Z/pZ has exactly (2j)n representation in Dj .
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Redundancy in the PMNS

Let a ∈ Z/pZ.

The set of representations

Let’s define the set Rj(a) as:

Rj(a) = {A ∈ Dj ∩ Zn | a = A(γ) (mod p)}

Property:

If L = LB, then:
#Rj(a) = (2j)n

In particular, #R1(a) = 2n.

Easy to compute: the representations of zeros in Dj

It corresponds to the lattice points in Dj .

Rj(0) = {(α0, . . . , αn−1)G, with αi ∈ Z ∩ [−j , j [ } .
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Redundancy in the PMNS

Property:

Let us assume that L = LB.
Let a ∈ Z/pZ. If A is its unique representation in H, then:

Rj(a) = {A + J | J ∈ Rj(0)} .

Questions:

• How to compute a representation in H?

• How to make PMNS elements live in a set Dj?

Let us first focus on D1.
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An interesting comparison: D1 vs H

Comparison 1:

If L = LB, then:

• each a ∈ Z/pZ has exactly one representation in H.

• each a ∈ Z/pZ has exactly 2n representation in D1.

Comparison 2:

• If A ∈ H, then ‖A‖∞ < ‖G‖1.

• If A ∈ D1, then ‖A‖∞ 6 ‖G‖1.

So, same memory requirement to represent their elements.
But, different redundancies.
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Internal reduction to D1

Let A ∈ Zn−1[X ], with A = (α0, α1, . . . , αn−1)G.

Fundamental property:

If ∀i ∈ {0, ..., n − 1}, −φ 6 αi 6 0, then:

GMont-like(A) ∈ D1.

Question:

How to make all the coordinates of an element negative?

Answer:

Using the translation vector.
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The translation vector (a simplified version)

Let A,B ∈ B and C = A× B mod E .

Property:

C = αG, with α = (α0, . . . , αn−1) ∈ Rn such that:

‖α‖∞ 6 w(ρ− 1)2‖G−1‖1 .

• Let u = dw(ρ− 1)2‖G−1‖1e.

• The translation vector T is defined as follows:

T = (−u, . . . ,−u)G .

Important: note that T ∈ L.

Consequence:

• C + T = βG, with −2u 6 βi 6 0.

• Thus, if φ > 2u, then GMont-like(C + T ) ∈ D1.
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The translation vector: example for φ = 4, with u = 2

T

G0

G1
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About the bounds

Note: For simplicity, the parameter δ for ‘free’ additions is not included. See

https://eprint.iacr.org/2023/1231 for full formulas and details.

Old bounds on ρ and φ:

ρ > 2‖G‖1 ,

φ > 2wρ .

New bounds for reduction in D1, using T :

ρ = ‖G‖1 + 1 ,

φ > 2u ,

with u = dw‖G‖21‖G−1‖1e.
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Equality test in the PMNS

Let A,B ∈ B.

Goal:

Check if A(γ) ≡ B(γ) (mod p), without conversion out of the PMNS.

Fundamental property:

Let A ∈ L, such that: A = αG. So α ∈ Zn.

If ∀i ∈ {0, ..., n − 1}, −φ < αi 6 0, then:

GMont-like(A) = 0
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Equality test in the PMNS

We assume that φ > 2u > 4, with u = dw(ρ− 1)2‖G−1‖1e.

A fact:

If A,B ∈ B, then: A− B = νG, with ‖ν‖∞ 6 2 < φ.

So, the previous property applies.

The check:

A ≡ B ⇐⇒ GMont-like((A− B) + T ) = 0

Remark:

• Works regardless of PMNS redundancy.

• Does not require that L = LB.
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Implementations

Codes to generate PMNS, study its redundancy, perform equality test
(with examples) and much more are available at:

https://github.com/arithPMNS/PMNS-and-redundancy

The associated GitHub account also contains repositories that provide C code generators

from PMNS parameters.
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Open problems

• PMNS and Side Channel attacks.

• Security proof of PMNS randomisation.

• Statistical analysis of the randomisation operations

• PMNS for PQC

• Improve software and hardware implementations

• ...

⇒ The answers during Wrach 2027 organized by the ANR MAERA
project?
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