Randomisation en PMNS: arithmetic, redundancy and equality test

Nadia EL MRABET

SAS, Ecoles des Mines de Saint Etienne

WRACH 2025 Roscoff, April 23 2025

Context:

- Main goal: Efficient and secure modular arithmetic
- PMNS: Polynomial Modular Number System
- Main characteristic: Elements are polynomials in the PMNS
- Additional characteristic: PMNS is a redundant system

Context:

- Main goal: Efficient and secure modular arithmetic
- PMNS: Polynomial Modular Number System
- Main characteristic: Elements are polynomials in the PMNS
- Additional characteristic: PMNS is a redundant system

Goals:

- Improve and extend PMNS generation
- Study and control the redundancy in the PMNS
- Perform equality test within the system

Presentation based on: https://eprint.iacr.org/2023/1231

- PMNS and its arithmetic
- 2 Redundancy in the PMNS
- 3 Equality test in the PMNS
- Bonus: What else?

Let $p \ge 3$, be an odd integer. We want to represent elements of $\mathbb{Z}/p\mathbb{Z}$.

A PMNS is a subset of $\mathbb{Z}[X]$, defined by a tuple $\mathcal{B} = (p, n, \gamma, \rho, E)$.

- $n \in \mathbb{N}$: elements are represented with *n* coefficients.
- $\gamma \in \mathbb{Z}/p\mathbb{Z}$: $T \in \mathcal{B}$ represents the integer $t = T(\gamma) \pmod{p}$
- $\rho \in \mathbb{N}$: $\|T\|_{\infty} < \rho$, $\forall T \in \mathcal{B}$
- E: a monic polynomial $\in \mathbb{Z}_n[X]$, such that $E(\gamma) \equiv 0 \pmod{p}$.

where $0 < \gamma < p$ and $\rho \approx \sqrt[n]{p}$.

Example:
$$\mathcal{B} = (p, n, \gamma, \rho, E) = (19, 3, 7, 2, X^3 - 1)$$

0	1	2	3	4
0	1	$-X^2 - X + 1$	$X^2 - X - 1$	$X^2 - X$
5	6	7	8	9
$X^2 - X + 1$	X-1	X	X+1	$-X^{2}+1$
10	11	12	13	14
$X^2 - 1$	<i>X</i> ²	$X^{2} + 1$	-X + 1	$-X^2 + X - 1$
15	16	17	18	
$-X^{2} + X$	$-X^2 + X + 1$	$X^{2} + X - 1$	-1	

 $(X^2 - 1) \equiv 10_B$, since $7^2 - 1 = 48 \equiv 10 \pmod{19}$.

A redundant system: $(-X - 1) \equiv 11_{\mathcal{B}}$. $(X^2 + X + 1) \equiv 0_{\mathcal{B}}$. Let $A, B \in \mathcal{B}$. There are two main operations:

- Addition: S = A + B
- Multiplication: $C = A \times B$

We have:

- deg(S) < n, but $\|S\|_{\infty} < 2
 ho$
- deg(C) < 2n-1, and $\|C\|_{\infty} < n
 ho^2$

So, we need to:

- reduce $\deg(C) \Rightarrow$ **External reduction**
- reduce $\|C\|_{\infty}$ and $\|S\|_{\infty} \Rightarrow$ Internal reduction

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

• Let
$$a = 8$$
; $A \equiv a_{\mathcal{B}}$, with $A(X) = X + 1$

• Let
$$b = 12$$
; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

• Let
$$a = 8$$
; $A \equiv a_{\mathcal{B}}$, with $A(X) = X + 1$

• Let
$$b = 12$$
; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$

•
$$C = AB = X^3 + X^2 + X + 1$$

•
$$C(7) \mod 19 = 1 = ab \pmod{19} = 1$$
, but $C \notin \mathcal{B}$

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

- Let a = 8; $A \equiv a_{\mathcal{B}}$, with A(X) = X + 1
- Let b = 12; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$
- $C = AB = X^3 + X^2 + X + 1$
- $C(7) \mod 19 = 1 = ab \pmod{19} = 1$, but $C \notin B$

•
$$R = C \mod E = X^2 + X + 2$$

• $R(7) \mod 19 = 1$ and $\deg(R) < 3$, but $R \notin \mathcal{B}$.

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

• Let
$$a = 8$$
; $A \equiv a_{\mathcal{B}}$, with $A(X) = X + 1$

• Let
$$b = 12$$
; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$

•
$$C = AB = X^3 + X^2 + X + 1$$

•
$$C(7) \mod 19 = 1 = ab \pmod{19} = 1$$
, but $C \notin \mathcal{B}$

•
$$R = C \mod E = X^2 + X + 2$$

• $R(7) \mod 19 = 1$ and $\deg(R) < 3$, but $R \notin \mathcal{B}$.

Internal reduction:

• Let
$$T(X) = X^2 + X + 1$$
.
 $T(7) \equiv 0 \pmod{19}$ and $S = R - T = 1 \in \mathcal{B}$

How to find such a polynomial *T*?
 ⇒ the internal reduction process

The internal reduction

Let $R \in \mathbb{Z}_{n-1}[X]$, with possibly $||R||_{\infty} \ge \rho$.

The Goal:

find $S \in \mathbb{Z}_{n-1}[X]$, such that: $\|S\|_{\infty} < \rho$ and $S(\gamma) \equiv R(\gamma) \pmod{p}$

Equivalent to compute:

$$T \in \mathbb{Z}_{n-1}[X]$$
, such that: $T(\gamma) \equiv 0 \pmod{p}$ and $\|S\|_{\infty} = \|R - T\|_{\infty} < \rho$

The internal reduction

Let $R \in \mathbb{Z}_{n-1}[X]$, with possibly $||R||_{\infty} \ge \rho$.

The Goal:

find $S \in \mathbb{Z}_{n-1}[X]$, such that: $\|S\|_{\infty} < \rho$ and $S(\gamma) \equiv R(\gamma) \pmod{p}$

Equivalent to compute:

$$T\in \mathbb{Z}_{n-1}[X]$$
, such that: $T(\gamma)\equiv 0 \pmod{p}$ and $\|S\|_{\infty}=\|R-T\|_{\infty}<
ho$

Many methods to do this reduction DDEMV'19:

- Montgomery-like method DDEMV'19
- Barrett-like method
- Babaï-based approaches
- 'Direct' approaches

Internal reduction: the Montgomery-like approach

By Christophe Negre and Thomas Plantard (2008).

Introduces an integer ϕ and two polynomials $M, M' \in \mathbb{Z}_{n-1}[X]$, such that:

- $\phi \geqslant 2$
- $M(\gamma) \equiv 0 \pmod{p}$
- $M' = -M^{-1} \mod (E, \phi)$

Mont-like:

- 1: Input : $R \in \mathbb{Z}_{n-1}[X]$
- 2: **Output :** $S \in \mathbb{Z}_{n-1}[X]$, with $S(\gamma) \equiv R(\gamma)\phi^{-1} \pmod{p}$
- 3: $Q \leftarrow R \times M' \mod (E, \phi)$
- 4: $T \leftarrow Q \times M \mod E$
- 5: $S \leftarrow (R + T)/\phi$ # exact divisions

6: **return** *S*

Generation of M: a lattice of zeros

To a PMNS \mathcal{B} , one associates the following lattice:

$$\mathcal{L}_{\mathcal{B}} = \{ \boldsymbol{A} \in \mathbb{Z}_{\boldsymbol{n}-1}[\boldsymbol{X}] \mid \boldsymbol{A}(\gamma) \equiv 0 \pmod{\boldsymbol{p}} \}$$

- $\mathcal{L}_{\mathcal{B}}$ is a *n*-dimensional full-rank Euclidean lattice;
- a basis of $\mathcal{L}_{\mathcal{B}}$ is:

$$\mathsf{B} = \begin{pmatrix} p & 0 & 0 & \dots & 0 & 0 \\ t_1 & 1 & 0 & \dots & 0 & 0 \\ t_2 & 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ t_{n-2} & 0 & 0 & \dots & 1 & 0 \\ t_{n-1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \overset{\leftarrow}{\underset{\leftarrow}} p \\ \overset{\leftarrow}{\underset{\leftarrow}} X + t_1 \\ \xleftarrow}{\underset{\leftarrow}} X^2 + t_2 \\ \overset{\leftarrow}{\underset{\leftarrow}} X^{n-2} + t_{n-2} \\ \xleftarrow}{\underset{\leftarrow}} X^{n-1} + t_{n-1} \end{pmatrix}$$

where $t_i = (-\gamma)^i \mod p$.

Note: each line *i* of B represents the polynomial $X^i + t_i$.

Generation of M: a lattice of zeros

- Let \mathcal{W} be a reduced basis of $\mathcal{L}_{\mathcal{B}}$;
- i.e. W = LLL(B) = BKZ(B) = HKZ(B), ...

Let's assume that ϕ is a power of two (best choice for efficiency).

Fundamental result: (Didier, Dosso, Véron, JCEN-2020)

There always exists $(\alpha_0, \ldots, \alpha_{n-1}) \in \{0, 1\}^n$, such that:

$$M = \sum_{i=0}^{n-1} \alpha_i \mathcal{W}_i$$
 and $M' = -M^{-1} \mod (E, \phi)$ exists.

Note:

- we need Resultant(E, M) to be odd for M' to exist.
- we take $\rho \approx \|M\|_{\infty}$, hence a reduced basis \mathcal{W} .

So, to find a suitable polynomial M, a search is done in a space of size 2^n .

Classical cryptography

- RSA 2048-4096 bits;
- ECC: scalar multiplication, pairings 256-512 bits.

Classical cryptography

- RSA 2048-4096 bits;
- ECC: scalar multiplication, pairings 256-512 bits.

PQC

- SQiSign 256-512 bits.
- CSidh 256-512 bits.
- Racoon $q = (2^{24} 2^{18} + 1) \times (2^{25} 2^{18} + 1)$
- Dilithium 23 bits...

Brainpool, pairings DDE'25

Processor: Intel 11th Gen Intel Core $i5-1135G7@2.40GHz \times 8$

Memory: 16 GiB of RAM

OS: Ubuntu 20.04.6 LTS (64 bits)

Our C implementations of PMNS can be found in this GitHub repository:

https://github.com/PMNS-APPLICATION/

Table: Clock cycle number comparisons of Modular Multiplication for **brainpool** curve moduli.

	PMNS	OpenSSL	
Modulus		Bloc-Mont	Std
brainpoolP256r1	177	181	718
brainpoolP384r1	267	294	1071
brainpoolP512r1	405	347	1385

Table: Clock cycle number comparisons of Modular Multiplication for pairing-friendly base fields

	PMNS	GMP		
Modulus		Bloc-Mont	Low-Ivl	Std
KSS16-330	225	248	494	541
BN-462	349	368	709	762
BLS12-381	275	249	496	547

Hardware implementation: Block slicing

$$A = 59 - 13 \cdot X + 3 \cdot X^2 + 52 \cdot X^3$$

Hardware implementation

FPGAs devices : quick prototyping and design space exploration Modern Xilinx Ultrascale FPGA family used in [8] DSP48E2 arithmetic accelerator components feature:

- A 17x17 bits multiplier
- A 3-input 48-bit adder which can be used to add the result of a multiplication, accumulate data (possibly right shifted by 17 bits) and add external data in a single clock cycle
- $w=17\ \text{bits}$ slicing of operands.

<u>Primary goals</u>: performance and scalability to any number of coefficients and size of coefficients.

Hardware implementation

 $ilde{A}, ilde{B}$: polynomial blocks such that $||A||_{\infty} < 2^{17}$ and $||B||_{\infty} < 2^{17}$, N=5

Target	Cycle	Coefficients					
		X^0 X^1 X^2 X^3 X^4					
Ã		Ã ₀	$ ilde{A_1}$	Ã ₂	Ã3	Ã4	
Ĩ		₿₀	\tilde{B}_1	₿ ₂	₿ ₃	₿ 4	

		Relaxed Scheduling (N odd)				
$ ilde{A} \cdot ilde{B}[E]$	1	Ã₀́B₀	$\setminus \lambda \tilde{A}_3 \tilde{B}_3$	$\tilde{A}_1\tilde{B}_1$	$\lambda \tilde{A}_4 \tilde{B}_4$	$\tilde{A}_2 \tilde{B}_2$
	2	$+\lambda \tilde{A}_2 \tilde{B}_3$	$+$ $\tilde{A}_0 \tilde{B}_1$	$+ \lambda \tilde{A}_3 \tilde{B}_4$	$+ \tilde{A}_1 \tilde{B}_2^{\prime}$	$+ \tilde{A}_4 \tilde{B}_0$

Hardware implementation

Design	Freq	Latency	DSP/LUT/FF	Time	DSP/LUT/FF
parameters	(MHz)	(cc)		(μs)	AT (resource. μ s)
width $= 256$					
CA0D2C1E [8]	625	140	16/1759/3365	0.224	3.58/394/754
AMNS [3]	200	33	120/2728/-	0.165	19.8/450/-
AMNS [3]	194	47	91/1718/-	0.242	22.0/415/-
RNS [1]	-	-	248/9450/-	0.0852	21.13/805/-
N = 3, s = 6	625	111	18/4156/5145	0.178	3.20/738/914
width $= 512$					
CA0D2C1E [8]	625	275	31/3443/6602	0.440	13.6/1510/2900
AMNS [3]	162	33	188/29985/-	0.204	38.4/6120/-
AMNS [3]	182	47	176/37138/-	0.258	45.4/9580/-
N = 7, s = 5	550	199	35/8124/10128	0.362	12.7/2940/3660
width $= 2048$					
CA0D2C1E [8]	625	1085	121/13487/22602	1.74	210/23400/39000
N = 5, $s = 25$	500	785	125/29182/35008	1.57	196/45800/54900
width = 4096					
CA0D2C1E [8]	625	2174	242/26978/44806	3.48	842/93800/156000
N = 5, $s = 25$	525	1553	245/58161/66740	2.96	725/172000/197000

Hardware implementation ENPV'24

Open-Source project

https://github.com/LOUISNOYEZ/AMNS_MM

A summary: the pro

- High parallelization capability (no carry propagation nor conditional branching)
- It is always possible to generate efficient PMNS given any prime: Efficient modular operations using the adapted modular number system (JCEN-2020)
- PMNS has been proven competitive for both hardware and software implementations:
 - PMNS for Efficient Arithmetic and Small Memory Cost (TETC-2022)
 - Modular Multiplication in the AMNS representation: Hardware Implementation (SAC-2024)
- PMNS is redundant: it allows easy and efficient randomisation. See: Randomization of Arithmetic over Polynomial Modular Number System (ARITH-26/2019).

When *n* becomes big:

• The generation of the parameter *M* could be very long; the search is done in a space of size 2ⁿ.

PMNS is redundant:

- More memory is needed to represent elements (compared to a non-redundant system).
- Trivial equality test is not possible.

- Define and control redundancy in the PMNS.
- Make equality test possible within the PMNS (even when the system is chosen very redundant).

PMNS and its arithmetic

3 Equality test in the PMNS

Redundancy in the PMNS: first attempt to secure against SCA $% \left({{{\rm{SCA}}} \right)$

Redundancy in the PMNS: first attempt to secure against SCA

Reductions are guilty

The internal and external reductions are well defined, so well that we define a canonical representation in PMNS.

Redundancy in the PMNS: first attempt to secure against SCA

Reductions are guilty

The internal and external reductions are well defined, so well that we define a canonical representation in PMNS.

The end of PMNS vs SCA?

Of course not!

Redundancy in the PMNS

Limitations:

- It is not precisely defined.
- We can only choose the minimum number of distinct representations for Z/pZ elements in the PMNS.

See: Randomization of Arithmetic over PMNS (ARITH-26).

Motivations:

Precisely control the redundancy for:

- smaller memory requirement to represent element,
- a more reliable randomisation.

A new tool: the set \mathcal{D}_i

Sub-lattice \mathcal{L} of zeros: some fundamental regions

Let \mathcal{G} be a basis of \mathcal{L} .

Let ${\mathcal H}$ be the fundamental domain of ${\mathcal L}:$

$$\mathcal{H} = \{t \in \mathbb{R}^n \mid t = \sum_{i=0}^{n-1} \mu_i \mathcal{G}_i \ ext{ and } 0 \leqslant \mu_i < 1\}$$

And \mathcal{H}' be the fundamental region:

$$\mathcal{H}' = \{t \in \mathbb{R}^n \mid t = \sum_{i=0}^{n-1} \mu_i \mathcal{G}_i \text{ and } -\frac{1}{2} \leqslant \mu_i < \frac{1}{2}\}$$

Remarks:

• If $V \in \mathcal{H}$, then $\|V\|_{\infty} < \|\mathcal{G}\|_1$.

• If
$$V \in \mathcal{H}'$$
, then $\|V\|_{\infty} \leqslant rac{1}{2} \|\mathcal{G}\|_1$.

A representation of \mathcal{H} and \mathcal{H}' , for n = 2

Figure: \mathcal{H}

Figure: \mathcal{H}'

Let $j \ge 1$ be an integer.

We define the set \mathcal{D}_j as:

$$\mathcal{D}_j = \{ t \in \mathbb{R}^n \mid t = \sum_{i=0}^{n-1} \mu_i \mathcal{G}_i \text{ and } -j \leqslant \mu_i < j \}$$

This can be seen as an extension of the fundamental region $\mathcal{H}^{\prime}.$

Remark

If $A \in \mathcal{D}_j$, then: $\|A\|_{\infty} \leqslant j \|\mathcal{G}\|_1$.

A representation of \mathcal{D}_2 , for n = 2

Domain \mathcal{D}_1 vs \mathcal{D}_2 , for n = 2

A representation of \mathcal{H}' , \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 , for n = 2

Fundamental result:

The set \mathcal{D}_j contains exactly $(2j)^n$ times the set \mathcal{H} .

Property:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly one representation in \mathcal{H} .

Fundamental result:

The set \mathcal{D}_j contains exactly $(2j)^n$ times the set \mathcal{H} .

Property:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly one representation in \mathcal{H} .

Consequence:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then:

each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly $(2j)^n$ representation in \mathcal{D}_j .

Redundancy in the PMNS

Let $a \in \mathbb{Z}/p\mathbb{Z}$.

The set of representations

Let's define the set $\mathcal{R}_j(a)$ as:

$$\mathcal{R}_j(a) = \{A \in \mathcal{D}_j \cap \mathbb{Z}^n \mid a = A(\gamma) \pmod{p}\}$$

Redundancy in the PMNS

Let $a \in \mathbb{Z}/p\mathbb{Z}$.

The set of representations

Let's define the set $\mathcal{R}_j(a)$ as:

$$\mathcal{R}_j(a) = \{A \in \mathcal{D}_j \cap \mathbb{Z}^n \mid a = A(\gamma) \pmod{p}\}$$

Property:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then:

$$\#\mathcal{R}_j(a)=(2j)^n$$

In particular, $\#\mathcal{R}_1(a) = 2^n$.

Easy to compute: the representations of zeros in \mathcal{D}_i

It corresponds to the lattice points in \mathcal{D}_j .

 $\mathcal{R}_{j}(0) = \{(\alpha_{0}, \ldots, \alpha_{n-1})\mathcal{G}, \text{ with } \alpha_{i} \in \mathbb{Z} \cap [-j, j[\}.$

Property:

Let us assume that $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$.

Let $a \in \mathbb{Z}/p\mathbb{Z}$. If A is its unique representation in \mathcal{H} , then:

$$\mathcal{R}_j(a) = \{A+J \mid J \in \mathcal{R}_j(0)\}.$$

Questions:

- How to compute a representation in \mathcal{H} ?
- How to make PMNS elements live in a set D_i ?

Let us first focus on \mathcal{D}_1 .

Comparison 1:

- If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then:
 - each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly one representation in \mathcal{H} .
 - each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly 2^n representation in \mathcal{D}_1 .

Comparison 2:

- If $A \in \mathcal{H}$, then $\|A\|_{\infty} < \|\mathcal{G}\|_1$.
- If $A \in \mathcal{D}_1$, then $\|A\|_{\infty} \leqslant \|\mathcal{G}\|_1$.

So, same memory requirement to represent their elements. But, different redundancies.

Internal reduction to \mathcal{D}_1

Let
$$A \in \mathbb{Z}_{n-1}[X]$$
, with $A = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})\mathcal{G}$.

Fundamental property:

If $\forall i \in \{0, ..., n-1\}$, $-\phi \leqslant \alpha_i \leqslant 0$, then:

GMont-like $(A) \in \mathcal{D}_1$.

Question:

How to make all the coordinates of an element negative?

Answer:

Using the translation vector.

The translation vector (a simplified version)

Let $A, B \in \mathcal{B}$ and $C = A \times B \mod E$.

Property:

$$\mathcal{C} = \alpha \mathcal{G}$$
, with $\alpha = (\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$ such that:
 $\|\alpha\|_{\infty} \leqslant w(\rho - 1)^2 \|\mathcal{G}^{-1}\|_1.$

• Let
$$u = \lceil w(\rho - 1)^2 \| \mathcal{G}^{-1} \|_1 \rceil$$
.

• The translation vector \mathcal{T} is defined as follows:

$$\mathcal{T} = (-u,\ldots,-u)\mathcal{G}$$
.

Important: note that $\mathcal{T} \in \mathcal{L}$.

The translation vector (a simplified version)

Let $A, B \in \mathcal{B}$ and $C = A \times B \mod E$.

Property:

$$\mathcal{C} = \alpha \mathcal{G}$$
, with $\alpha = (\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$ such that:
 $\|\alpha\|_{\infty} \leqslant w(\rho - 1)^2 \|\mathcal{G}^{-1}\|_1.$

• Let
$$u = \lceil w(\rho - 1)^2 \| \mathcal{G}^{-1} \|_1 \rceil$$
.

• The translation vector \mathcal{T} is defined as follows:

$$\mathcal{T} = (-u,\ldots,-u)\mathcal{G}$$
.

Important: note that $\mathcal{T} \in \mathcal{L}$.

Consequence:

• $C + T = \beta G$, with $-2u \leq \beta_i \leq 0$.

• Thus, if $\phi \ge 2u$, then **GMont-like** $(C + T) \in D_1$.

The translation vector: example for $\phi = 4$, with u = 2

The translation vector: example for $\phi = 4$, with u = 2

Note: For simplicity, the parameter δ for 'free' additions is not included. See https://eprint.iacr.org/2023/1231 for full formulas and details.

Old bounds on ρ and ϕ : $\rho \ge 2 \|\mathcal{G}\|_1,$ $\phi \ge 2w\rho.$

New bounds for reduction in \mathcal{D}_1 , using \mathcal{T} :

$$\begin{split} \rho &= \|\mathcal{G}\|_1 + 1\,,\\ \phi &\geqslant 2u\,, \end{split}$$

with $u = [w \| \mathcal{G} \|_1^2 \| \mathcal{G}^{-1} \|_1].$

PMNS and its arithmetic

2 Redundancy in the PMNS

Equality test in the PMNS

4 Bonus: What else?

Let $A, B \in \mathcal{B}$.

Goal:

Check if $A(\gamma) \equiv B(\gamma) \pmod{p}$, without conversion out of the PMNS.

Fundamental property:

Let $\mathbf{A} \in \mathcal{L}$, such that: $\mathbf{A} = \alpha \mathcal{G}$. So $\alpha \in \mathbb{Z}^n$.

If $\forall i \in \{0, ..., n-1\}$, $-\phi < \alpha_i \leqslant 0$, then:

GMont-like(A) = 0

Equality test in the PMNS

We assume that $\phi \ge 2u \ge 4$, with $u = \lceil w(\rho - 1)^2 \| \mathcal{G}^{-1} \|_1 \rceil$.

A fact:

If
$$A, B \in \mathcal{B}$$
, then: $A - B = \nu \mathcal{G}$, with $\|\nu\|_{\infty} \leq 2 < \phi$.

So, the previous property applies.

The check:

$$A \equiv B \iff \mathbf{GMont-like}((A - B) + \mathcal{T}) = 0$$

Remark:

- Works regardless of PMNS redundancy.
- Does not require that $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$.

Codes to generate PMNS, study its redundancy, perform equality test (with examples) and much more are available at:

$https://github.com/arith {\sf PMNS}/{\sf PMNS}-and-redundancy$

The associated GitHub account also contains repositories that provide C code generators from PMNS parameters.

PMNS and its arithmetic

2 Redundancy in the PMNS

3 Equality test in the PMNS

- PMNS and Side Channel attacks.
- Security proof of PMNS randomisation.
- Statistical analysis of the randomisation operations
- PMNS for PQC
- Improve software and hardware implementations
- ...
- \Rightarrow The answers during Wrach 2027 organized by the ANR MAERA project?