
Breaking HuFu with 0 Leakage

Julien Devevey, Morgane Guerreau, Thomas Legavre,
Ange Martinelli, Thomas Ricosset

WRACH

Agence Nationale de la Sécurité des Systèmes d’information, Paris
Sorbonne Université, CNRS, LIP6, Paris

Thales, Gennevilliers

April 22, 2025

1 / 19

Introduction

What is HuFu?

• Signature scheme based on
unstructured lattices

• Based on the Hash-and-Sign
paradigm [GPV08] (like Falcon)

• Round 1 candidate to NIST
additional post-quantum signature
competition

Why attack it?

• Absence of structure counters
previous SCA done on Falcon

• Trapdoor sampling a la [MP12] is
used in other contexts (IBEs...)

2 / 19

Introduction

What is HuFu?

• Signature scheme based on
unstructured lattices

• Based on the Hash-and-Sign
paradigm [GPV08] (like Falcon)

• Round 1 candidate to NIST
additional post-quantum signature
competition

Why attack it?

• Absence of structure counters
previous SCA done on Falcon

• Trapdoor sampling a la [MP12] is
used in other contexts (IBEs...)

2 / 19

ISIS and LWE

(Forgery) ISISB

For t and B, find z with ∥z∥ < B such that

A · z = t mod Q

(Key recovery) LWE with short secret

For b and B, find s, e with ∥(e, s)∥ < B such that

A · s+ e = (I | A) · (e, s) = b mod Q

3 / 19

Primal Attack on LWE

Problem: We want to find small s and e such that A · s+ e = b mod Q

Lattice construction:

• Consider the lattice

Λ = {v ∈ Zn+m+1 | (A | Im | b) · v ≡ 0 (mod q)}

• It contains an unusually short vector (s | e | −1) since

(A | Im | b) · (s | e | −1) = A · s+ e− b ≡ 0 (mod q)

Hardness: For d > β > 50, BKZ finds a vector v ∈ Λ such that:

∥v∥ ≤ δdβ · Vol(Λ)1/d and δβ ≈
(
(πβ)1/β

2πe

) 1
2(β−1)

4 / 19

Primal Attack on LWE

Problem: We want to find small s and e such that A · s+ e = b mod Q

Lattice construction:

• Consider the lattice

Λ = {v ∈ Zn+m+1 | (A | Im | b) · v ≡ 0 (mod q)}

• It contains an unusually short vector (s | e | −1) since

(A | Im | b) · (s | e | −1) = A · s+ e− b ≡ 0 (mod q)

Hardness: For d > β > 50, BKZ finds a vector v ∈ Λ such that:

∥v∥ ≤ δdβ · Vol(Λ)1/d and δβ ≈
(
(πβ)1/β

2πe

) 1
2(β−1)

4 / 19

Primal Attack on LWE

Problem: We want to find small s and e such that A · s+ e = b mod Q

Lattice construction:

• Consider the lattice

Λ = {v ∈ Zn+m+1 | (A | Im | b) · v ≡ 0 (mod q)}

• It contains an unusually short vector (s | e | −1) since

(A | Im | b) · (s | e | −1) = A · s+ e− b ≡ 0 (mod q)

Hardness: For d > β > 50, BKZ finds a vector v ∈ Λ such that:

∥v∥ ≤ δdβ · Vol(Λ)1/d and δβ ≈
(
(πβ)1/β

2πe

) 1
2(β−1)

4 / 19

Hash-and-sign for Lattices and HuFu

Generic framework for lattice-based signatures [GPV08] such as Falcon. Instanciated as
follows for HuFu:

• Verification key: a matrix A = (Im|Â|B) with B = pIm − ÂS− E mod pq,

• Signing key: sk⊤ = q(Im|S|E), a short basis of Λ = {Ax = 0 mod pq, x ∈ Zk},

• Given a message µ, sign by giving a short preimage x of u = H(µ) by A,

• How is x sampled?

5 / 19

Gadget

Goal: compute short x such A · x = H(m) mod Q

Gadget from [MP12]

Family of A, T and G such that:

AT = G mod Q
Public Key: A Private Key: T Gadget: G

Compute z so that G · z = H(m) mod Q, and return x = Tz as preimage of H(m)

× Collecting many preimages will leak T...

✓ Add mask p: preimages x = p+ Tz
and the target become u = H(m)− Ap instead of H(m)

6 / 19

Gadget

Goal: compute short x such A · x = H(m) mod Q

Gadget from [MP12]

Family of A, T and G such that:

AT = G mod Q
Public Key: A Private Key: T Gadget: G

Compute z so that G · z = H(m) mod Q, and return x = Tz as preimage of H(m)

× Collecting many preimages will leak T...

✓ Add mask p: preimages x = p+ Tz
and the target become u = H(m)− Ap instead of H(m)

6 / 19

Gadget

Goal: compute short x such A · x = H(m) mod Q

Gadget from [MP12]

Family of A, T and G such that:

AT = G mod Q
Public Key: A Private Key: T Gadget: G

Compute z so that G · z = H(m) mod Q, and return x = Tz as preimage of H(m)

× Collecting many preimages will leak T...

✓ Add mask p: preimages x = p+ Tz
and the target become u = H(m)− Ap instead of H(m)

6 / 19

HuFu Gadget

Compact gadget:

pI, qI ∈ Zn×n such that pI · qI = Q · I with Q = p · q.

Trapdoor:
AT = pI mod Q

LWE-based construction:

A =
[
I
∣∣∣ Â ∣∣∣ pI− ÂS− E

]
, T =

E
S
I

Objective: Invert fpI : x 7→ pIx mod Q, i.e.,

pIx = u− e mod Q

Deterministic error decoding: Compute e such that u− e = pIv ∈ p · Zn.
Random preimage sampling: Sample short z ∈ q · Zn + v using Gaussian sampling.
Correctness:

pIz = pI(qIy + v) = Qy + u− e = u− e mod Q

7 / 19

HuFu Gadget

Compact gadget:

pI, qI ∈ Zn×n such that pI · qI = Q · I with Q = p · q.

Trapdoor:
AT = pI mod Q

LWE-based construction:

A =
[
I
∣∣∣ Â ∣∣∣ pI− ÂS− E

]
, T =

E
S
I

Objective: Invert fpI : x 7→ pIx mod Q, i.e.,

pIx = u− e mod Q

Deterministic error decoding: Compute e such that u− e = pIv ∈ p · Zn.
Random preimage sampling: Sample short z ∈ q · Zn + v using Gaussian sampling.
Correctness:

pIz = pI(qIy + v) = Qy + u− e = u− e mod Q

7 / 19

HuFu Gadget

Compact gadget:

pI, qI ∈ Zn×n such that pI · qI = Q · I with Q = p · q.

Trapdoor:
AT = pI mod Q

LWE-based construction:

A =
[
I
∣∣∣ Â ∣∣∣ pI− ÂS− E

]
, T =

E
S
I

Objective: Invert fpI : x 7→ pIx mod Q, i.e.,

pIx = u− e mod Q

Deterministic error decoding: Compute e such that u− e = pIv ∈ p · Zn.

Random preimage sampling: Sample short z ∈ q · Zn + v using Gaussian sampling.
Correctness:

pIz = pI(qIy + v) = Qy + u− e = u− e mod Q

7 / 19

HuFu Gadget

Compact gadget:

pI, qI ∈ Zn×n such that pI · qI = Q · I with Q = p · q.

Trapdoor:
AT = pI mod Q

LWE-based construction:

A =
[
I
∣∣∣ Â ∣∣∣ pI− ÂS− E

]
, T =

E
S
I

Objective: Invert fpI : x 7→ pIx mod Q, i.e.,

pIx = u− e mod Q

Deterministic error decoding: Compute e such that u− e = pIv ∈ p · Zn.
Random preimage sampling: Sample short z ∈ q · Zn + v using Gaussian sampling.

Correctness:
pIz = pI(qIy + v) = Qy + u− e = u− e mod Q

7 / 19

HuFu Gadget

Compact gadget:

pI, qI ∈ Zn×n such that pI · qI = Q · I with Q = p · q.

Trapdoor:
AT = pI mod Q

LWE-based construction:

A =
[
I
∣∣∣ Â ∣∣∣ pI− ÂS− E

]
, T =

E
S
I

Objective: Invert fpI : x 7→ pIx mod Q, i.e.,

pIx = u− e mod Q

Deterministic error decoding: Compute e such that u− e = pIv ∈ p · Zn.
Random preimage sampling: Sample short z ∈ q · Zn + v using Gaussian sampling.
Correctness:

pIz = pI(qIy + v) = Qy + u− e = u− e mod Q

7 / 19

HuFu Algorithms

Key Generation

1. Secret key: T =
(

E
S
I

)
2. Public key: A = [I, Â,B] and

B = P− (ÂS+ E)
• A · T = P

Verification

1. x′0 = H(m)− Âx1 − Bx2

2. Accept if ∥x′0, x1, x2∥ < B

Sign

1. Sample p from a short Gaussian
DT.

2. u = H(m)− Ap mod Q

3. v = ⌊u/p⌉ mod Q

4. Sample z←↩ Dq·Zk+v,r̄2 .

5. (x0, x1, x2) =
(

E
S
I

)
z+ p mod Q

6. if ∥x0 + e, x1, x2∥ < B

7. return (x1, x2)

8 / 19

HuFu Algorithms

Key Generation

1. Secret key: T =
(

E
S
I

)
2. Public key: A = [I, Â,B] and

B = P− (ÂS+ E)
• A · T = P

Verification

1. x′0 = H(m)− Âx1 − Bx2

2. Accept if ∥x′0, x1, x2∥ < B

Sign

1. Sample p from a short Gaussian
DT.

2. u = H(m)− Ap mod Q

3. v = ⌊u/p⌉ mod Q

4. Sample z←↩ Dq·Zk+v,r̄2 .

5. (x0, x1, x2) =
(

E
S
I

)
z+ p mod Q

6. if ∥x0 + e, x1, x2∥ < B

7. return (x1, x2)

8 / 19

Leakage in matrix-vector multiplication

Targeted operations: Si ,j · zi (resp. Ei ,j · zi)

Coefficients of S (resp. E) are ternary and follow a binomial distribution.
→ only three possible outputs for Si ,j · zi :

1. 0, setting the Hamming weight to 0.

2. zi , keeping the Hamming weight identical.

3. −zi , greatly changing the Hamming weight.

9 / 19

Leakage in matrix-vector multiplication

Targeted operations: Si ,j · zi (resp. Ei ,j · zi)

Coefficients of S (resp. E) are ternary and follow a binomial distribution.
→ only three possible outputs for Si ,j · zi :

1. 0, setting the Hamming weight to 0.

2. zi , keeping the Hamming weight identical.

3. −zi , greatly changing the Hamming weight.

9 / 19

Leakage in matrix-vector multiplication

Targeted operations: Si ,j · zi (resp. Ei ,j · zi)

Coefficients of S (resp. E) are ternary and follow a binomial distribution.
→ only three possible outputs for Si ,j · zi :

1. 0, setting the Hamming weight to 0.

2. zi , keeping the Hamming weight identical.

3. −zi , greatly changing the Hamming weight.

9 / 19

Overview

Two Attack scenarios:

Key Recovery with 0’s knowledge

︸ ︷︷ ︸
S

,

︸ ︷︷ ︸

E

SCA−−−→

︸ ︷︷ ︸
S

,

︸ ︷︷ ︸

E

lattice−−−−−−→
reduction

︸ ︷︷ ︸
S

Forgery with more knowledge

SC
A

−−−→

︸ ︷︷ ︸

S

,

()
︸︷︷︸
z

SCA−−−→

︸ ︷︷ ︸
S

lattice−−−−−−→
reduction

︸ ︷︷ ︸
S

forgery−−−−→
attack

σ∗

10 / 19

How to use partial information

Given an LWE sample As+ e and some 0s of s and e, how do we exploit them?

• Remove the i-th column of A if si = 0: dimension reduced by one.

• Write bi = ⟨ai , s⟩ if ei = 0. Dimension reduced by one. Some rewriting involved to
find a new LWE instance with one less dimension.

What is the cost of BKZ on the new LWE instance once every hint has been incorporated?

11 / 19

How to use partial information

Given an LWE sample As+ e and some 0s of s and e, how do we exploit them?

• Remove the i-th column of A if si = 0: dimension reduced by one.

• Write bi = ⟨ai , s⟩ if ei = 0. Dimension reduced by one. Some rewriting involved to
find a new LWE instance with one less dimension.

What is the cost of BKZ on the new LWE instance once every hint has been incorporated?

11 / 19

How to use partial information

Given an LWE sample As+ e and some 0s of s and e, how do we exploit them?

• Remove the i-th column of A if si = 0: dimension reduced by one.

• Write bi = ⟨ai , s⟩ if ei = 0. Dimension reduced by one. Some rewriting involved to
find a new LWE instance with one less dimension.

What is the cost of BKZ on the new LWE instance once every hint has been incorporated?

11 / 19

Key recovery with 0 knowledge

Goal: Find all zeros of S and E

Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by

x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19

Key recovery with 0 knowledge

Goal: Find all zeros of S and E
Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by

x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19

Key recovery with 0 knowledge

Goal: Find all zeros of S and E
Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by

x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19

Key recovery with 0 knowledge

Goal: Find all zeros of S and E
Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by

x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19

Key recovery with 0 knowledge

Goal: Find all zeros of S and E
Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Secret Only

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by

x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19

Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of zi .
But we can only do it for half of the values of zi.
→ only 75% of S can be recovered (without false positives)

Key recovery can be compromised..

But we can forge !

0 100 200 300 400 500 600 700
0

50
100
150
200
250
300
350
400
450

Recovered columns of S

B
K

Z
bl

oc
k

si
ze

β

13 / 19

Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of zi .
But we can only do it for half of the values of zi.
→ only 75% of S can be recovered (without false positives)

Key recovery can be compromised..

But we can forge !

0 100 200 300 400 500 600 700
0

50
100
150
200
250
300
350
400
450

Recovered columns of S

B
K

Z
bl

oc
k

si
ze

β

13 / 19

Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of zi .
But we can only do it for half of the values of zi.
→ only 75% of S can be recovered (without false positives)

Key recovery can be compromised..

But we can forge !

0 100 200 300 400 500 600 700
0

50
100
150
200
250
300
350
400
450

Recovered columns of S

B
K

Z
bl

oc
k

si
ze

β

13 / 19

Forging for specific vectors

Assuming the first k columns Sk of S are known via the previous attack, what can we do
with them?

• If the target is u =

(
u1
0

)
, then we set p = 0, v = ⌊u/p⌉ and z = v. A signature

would then be: (
x1
x2

)
=

(
S
Im

)
· z =

(
Sk 0
Ik 0

)
· z.

This vector is short, but which message did we sign?

14 / 19

Forging for specific vectors

Assuming the first k columns Sk of S are known via the previous attack, what can we do
with them?

• If the target is u =

(
u1
0

)
, then we set p = 0, v = ⌊u/p⌉ and z = v. A signature

would then be: (
x1
x2

)
=

(
S
Im

)
· z =

(
Sk 0
Ik 0

)
· z.

This vector is short, but which message did we sign?

14 / 19

Forging for specific vectors

Assuming the first k columns Sk of S are known via the previous attack, what can we do
with them?

• If the target is u =

(
u1
0

)
, then we set p = 0, v = ⌊u/p⌉ and z = v. A signature

would then be: (
x1
x2

)
=

(
S
Im

)
· z =

(
Sk 0
Ik 0

)
· z.

This vector is short, but which message did we sign?

14 / 19

Finding specific vectors

• Choose any µ and compute u = H(µ) =

(
u1
u2

)
.

• Write A =

(
Ah

Al

)
• Find short x′ such that Alx

′ = u2 with lattice reduction

• Set u′ = u− Ax′ =

(
u′1
0

)
• We are back to the previous case!

15 / 19

How much costs a forgery?

We start by gathering d coefficients per column.

• First step: complete k columns via lattice reduction: k times LWE with dimension
reduced by d

• Second step: one more lattice reduction to find x′: dimension reduced by k.

• Third step: forgery for specific vectors (essentially free)

All that remains is to optimize over k.

16 / 19

Final Cost

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

75%

50%

Recovered coefficients per column

T
ot
al

b
it
-c
os
t

17 / 19

Conclusion

Two Attack scenarios:

Key Recovery with 0’s knowledge

︸ ︷︷ ︸
S

,

︸ ︷︷ ︸

E

SCA−−−→

︸ ︷︷ ︸
S

,

︸ ︷︷ ︸

E

lattice−−−−−−→
reduction

︸ ︷︷ ︸
S

Forgery with more knowledge

SC
A

−−−→

︸ ︷︷ ︸

S

,

()
︸︷︷︸
z

SCA−−−→

︸ ︷︷ ︸
S

lattice−−−−−−→
reduction

︸ ︷︷ ︸
S

forgery−−−−→
attack

σ∗

18 / 19

Future work

Hint-(M)LWE

Recover from an LWE instance s with additional knowledge: zi = yi + ci · s

Can be used to construct primitive, and estimate residual security with reduction from
Hint-MLWE to MLWE.

For exemple : Raccoon, Katana, Plover.
Problem: The problem is well understood only in gaussian settings.
Open Question: Cryptanalysis in other settings / try to have a reduction Hint-MLWE
→ MLWE.

19 / 19

Future work

Hint-(M)LWE

Recover from an LWE instance s with additional knowledge: zi = yi + ci · s

Can be used to construct primitive, and estimate residual security with reduction from
Hint-MLWE to MLWE.

For exemple : Raccoon, Katana, Plover.
Problem: The problem is well understood only in gaussian settings.
Open Question: Cryptanalysis in other settings / try to have a reduction Hint-MLWE
→ MLWE.

19 / 19

