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Introduction

What is HuFu?

• Signature scheme based on
unstructured lattices

• Based on the Hash-and-Sign
paradigm [GPV08] (like Falcon)

• Round 1 candidate to NIST
additional post-quantum signature
competition

Why attack it?

• Absence of structure counters
previous SCA done on Falcon

• Trapdoor sampling a la [MP12] is
used in other contexts (IBEs...)
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ISIS and LWE

(Forgery) ISISB

For t and B, find z with ∥z∥ < B such that

A · z = t mod Q

(Key recovery) LWE with short secret

For b and B, find s, e with ∥(e, s)∥ < B such that

A · s+ e = (I | A) · (e, s) = b mod Q
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Primal Attack on LWE

Problem: We want to find small s and e such that A · s+ e = b mod Q

Lattice construction:

• Consider the lattice

Λ = {v ∈ Zn+m+1 | (A | Im | b) · v ≡ 0 (mod q)}

• It contains an unusually short vector (s | e | −1) since

(A | Im | b) · (s | e | −1) = A · s+ e− b ≡ 0 (mod q)

Hardness: For d > β > 50, BKZ finds a vector v ∈ Λ such that:

∥v∥ ≤ δdβ · Vol(Λ)1/d and δβ ≈
(
(πβ)1/β

2πe

) 1
2(β−1)
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Hash-and-sign for Lattices and HuFu

Generic framework for lattice-based signatures [GPV08] such as Falcon. Instanciated as
follows for HuFu:

• Verification key: a matrix A = (Im|Â|B) with B = pIm − ÂS− E mod pq,

• Signing key: sk⊤ = q(Im|S|E), a short basis of Λ = {Ax = 0 mod pq, x ∈ Zk},

• Given a message µ, sign by giving a short preimage x of u = H(µ) by A,

• How is x sampled?
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Gadget

Goal: compute short x such A · x = H(m) mod Q

Gadget from [MP12]

Family of A, T and G such that:

AT = G mod Q
Public Key: A Private Key: T Gadget: G

Compute z so that G · z = H(m) mod Q, and return x = Tz as preimage of H(m)

× Collecting many preimages will leak T...

✓ Add mask p: preimages x = p+ Tz
and the target become u = H(m)− Ap instead of H(m)
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HuFu Gadget

Compact gadget:

pI, qI ∈ Zn×n such that pI · qI = Q · I with Q = p · q.

Trapdoor:
AT = pI mod Q

LWE-based construction:

A =
[
I
∣∣∣ Â ∣∣∣ pI− ÂS− E

]
, T =

E
S
I



Objective: Invert fpI : x 7→ pIx mod Q, i.e.,

pIx = u− e mod Q

Deterministic error decoding: Compute e such that u− e = pIv ∈ p · Zn.
Random preimage sampling: Sample short z ∈ q · Zn + v using Gaussian sampling.
Correctness:

pIz = pI(qIy + v) = Qy + u− e = u− e mod Q
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HuFu Algorithms

Key Generation

1. Secret key: T =
(

E
S
I

)
2. Public key: A = [I, Â,B] and

B = P− (ÂS+ E)
• A · T = P

Verification

1. x′0 = H(m)− Âx1 − Bx2

2. Accept if ∥x′0, x1, x2∥ < B

Sign

1. Sample p from a short Gaussian
DT.

2. u = H(m)− Ap mod Q

3. v = ⌊u/p⌉ mod Q

4. Sample z←↩ Dq·Zk+v,r̄2 .

5. (x0, x1, x2) =
(

E
S
I

)
z+ p mod Q

6. if ∥x0 + e, x1, x2∥ < B

7. return (x1, x2)

8 / 19



HuFu Algorithms

Key Generation

1. Secret key: T =
(

E
S
I

)
2. Public key: A = [I, Â,B] and
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Leakage in matrix-vector multiplication

Targeted operations: Si ,j · zi (resp. Ei ,j · zi )

Coefficients of S (resp. E) are ternary and follow a binomial distribution.
→ only three possible outputs for Si ,j · zi :

1. 0, setting the Hamming weight to 0.

2. zi , keeping the Hamming weight identical.

3. −zi , greatly changing the Hamming weight.
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Overview

Two Attack scenarios:

Key Recovery with 0’s knowledge


︸ ︷︷ ︸
S

,

 
︸ ︷︷ ︸

E

SCA−−−→




︸ ︷︷ ︸
S

,

 
︸ ︷︷ ︸

E

lattice−−−−−−→
reduction




︸ ︷︷ ︸
S

Forgery with more knowledge

SC
A

−−−→



︸ ︷︷ ︸

S

,

()
︸︷︷︸
z

SCA−−−→




︸ ︷︷ ︸
S

lattice−−−−−−→
reduction




︸ ︷︷ ︸
S

forgery−−−−→
attack

σ∗
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How to use partial information

Given an LWE sample As+ e and some 0s of s and e, how do we exploit them?

• Remove the i-th column of A if si = 0: dimension reduced by one.

• Write bi = ⟨ai , s⟩ if ei = 0. Dimension reduced by one. Some rewriting involved to
find a new LWE instance with one less dimension.

What is the cost of BKZ on the new LWE instance once every hint has been incorporated?
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Key recovery with 0 knowledge

Goal: Find all zeros of S and E

Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

# Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by

x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19



Key recovery with 0 knowledge

Goal: Find all zeros of S and E
Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

# Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by
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x′0 = H(m)− Âx1 − Bx2 mod Q

which involves only public values.

12 / 19



Key recovery with 0 knowledge

Goal: Find all zeros of S and E
Due to the distribution : half of their
coordinates are 0.

0100200300400500600700
0
50
100
150
200
250
300
350
400
450

Error-Secret Combined

LWE dimension

B
K
Z
b
lo
ck

si
ze

β

# Traces Recovered False Positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

Countermeasure

x0 = Ez+ p mod Q

can be replaced by
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Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of zi .
But we can only do it for half of the values of zi.
→ only 75% of S can be recovered (without false positives)

Key recovery can be compromised..

But we can forge !
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0
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Recovered columns of S

B
K

Z
bl

oc
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Forging for specific vectors

Assuming the first k columns Sk of S are known via the previous attack, what can we do
with them?

• If the target is u =

(
u1
0

)
, then we set p = 0, v = ⌊u/p⌉ and z = v. A signature

would then be: (
x1
x2

)
=

(
S
Im

)
· z =

(
Sk 0
Ik 0

)
· z.

This vector is short, but which message did we sign?

14 / 19



Forging for specific vectors

Assuming the first k columns Sk of S are known via the previous attack, what can we do
with them?

• If the target is u =

(
u1
0

)
, then we set p = 0, v = ⌊u/p⌉ and z = v. A signature

would then be: (
x1
x2

)
=

(
S
Im

)
· z =

(
Sk 0
Ik 0

)
· z.

This vector is short, but which message did we sign?

14 / 19



Forging for specific vectors

Assuming the first k columns Sk of S are known via the previous attack, what can we do
with them?

• If the target is u =

(
u1
0

)
, then we set p = 0, v = ⌊u/p⌉ and z = v. A signature

would then be: (
x1
x2

)
=

(
S
Im

)
· z =

(
Sk 0
Ik 0

)
· z.

This vector is short, but which message did we sign?

14 / 19



Finding specific vectors

• Choose any µ and compute u = H(µ) =

(
u1
u2

)
.

• Write A =

(
Ah

Al

)
• Find short x′ such that Alx

′ = u2 with lattice reduction

• Set u′ = u− Ax′ =

(
u′1
0

)
• We are back to the previous case!
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How much costs a forgery?

We start by gathering d coefficients per column.

• First step: complete k columns via lattice reduction: k times LWE with dimension
reduced by d

• Second step: one more lattice reduction to find x′: dimension reduced by k.

• Third step: forgery for specific vectors (essentially free)

All that remains is to optimize over k.
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Final Cost
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Conclusion

Two Attack scenarios:

Key Recovery with 0’s knowledge
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reduction
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Future work

Hint-(M)LWE

Recover from an LWE instance s with additional knowledge: zi = yi + ci · s

Can be used to construct primitive, and estimate residual security with reduction from
Hint-MLWE to MLWE.

For exemple : Raccoon, Katana, Plover.
Problem: The problem is well understood only in gaussian settings.
Open Question: Cryptanalysis in other settings / try to have a reduction Hint-MLWE
→ MLWE.
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