

Breaking HuFu with 0 Leakage

Julien Devevey, Morgane Guerreau, **Thomas Legavre**, Ange Martinelli, Thomas Ricosset

WRACH

Agence Nationale de la Sécurité des Systèmes d'information, Paris Sorbonne Université, CNRS, LIP6, Paris Thales, Gennevilliers April 22, 2025 What is HuFu?

- Signature scheme based on unstructured lattices
- Based on the Hash-and-Sign paradigm [GPV08] (like Falcon)
- Round 1 candidate to NIST additional post-quantum signature competition

What is HuFu?

- Signature scheme based on unstructured lattices
- Based on the Hash-and-Sign paradigm [GPV08] (like Falcon)
- Round 1 candidate to NIST additional post-quantum signature competition

Why attack it?

- Absence of structure counters previous SCA done on Falcon
- Trapdoor sampling a la [MP12] is used in other contexts (IBEs...)

(Forgery) ISIS_B

For t and B, find z with $\|\mathbf{z}\| < B$ such that

 $\mathbf{A} \cdot \mathbf{z} = \mathbf{t} \mod Q$

(Key recovery) LWE with short secret

For *b* and *B*, find *s*, *e* with $\|(\mathbf{e}, \mathbf{s})\| < B$ such that

 $\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = (\mathbf{I} \mid \mathbf{A}) \cdot (\mathbf{e}, \mathbf{s}) = \mathbf{b} \mod Q$

Primal Attack on LWE

Problem: We want to find small **s** and **e** such that $\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod Q$

Primal Attack on LWE

Problem: We want to find small **s** and **e** such that $\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod Q$ Lattice construction:

• Consider the lattice

$$\Lambda = \{ \mathbf{v} \in \mathbb{Z}^{n+m+1} \mid (\mathbf{A} \mid \mathbf{I}_m \mid \mathbf{b}) \cdot \mathbf{v} \equiv 0 \pmod{q} \}$$

• It contains an unusually short vector (${\boldsymbol{s}} \mid {\boldsymbol{e}} \mid -1)$ since

$$(\mathbf{A} \mid \mathbf{I}_m \mid \mathbf{b}) \cdot (\mathbf{s} \mid \mathbf{e} \mid -1) = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} - \mathbf{b} \equiv 0 \pmod{q}$$

Primal Attack on LWE

Problem: We want to find small **s** and **e** such that $\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod Q$ Lattice construction:

• Consider the lattice

$$\Lambda = \{ \mathbf{v} \in \mathbb{Z}^{n+m+1} \mid (\mathbf{A} \mid \mathbf{I}_m \mid \mathbf{b}) \cdot \mathbf{v} \equiv 0 \pmod{q} \}$$

• It contains an unusually short vector $(\mathbf{s} \mid \mathbf{e} \mid -1)$ since

$$(\mathbf{A} \mid \mathbf{I}_m \mid \mathbf{b}) \cdot (\mathbf{s} \mid \mathbf{e} \mid -1) = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} - \mathbf{b} \equiv 0 \pmod{q}$$

Hardness: For $d > \beta > 50$, BKZ finds a vector $\mathbf{v} \in \Lambda$ such that:

$$\|\mathbf{v}\| \leq \delta^d_eta \cdot \mathsf{Vol}(\Lambda)^{1/d} \qquad ext{and} \qquad \delta_eta pprox \left(rac{(\pieta)^{1/eta}}{2\pi e}
ight)^{rac{1}{2(eta-1)}}$$

Generic framework for lattice-based signatures [GPV08] such as Falcon. Instanciated as follows for HuFu:

- Verification key: a matrix $\mathbf{A} = (\mathbf{I}_m | \hat{\mathbf{A}} | \mathbf{B})$ with $\mathbf{B} = p \mathbf{I}_m \hat{\mathbf{A}} \mathbf{S} \mathbf{E} \mod pq$,
- Signing key: $\mathbf{s}\mathbf{k}^{\top} = q(\mathbf{I}_m | \mathbf{S} | \mathbf{E})$, a short basis of $\Lambda = {\mathbf{A}\mathbf{x} = 0 \mod pq, \mathbf{x} \in \mathbb{Z}^k}$,
- Given a message μ , sign by giving a short preimage **x** of $\mathbf{u} = H(\mu)$ by **A**,
- How is x sampled?

Gadget

Goal: compute short **x** such $\mathbf{A} \cdot \mathbf{x} = \mathcal{H}(\mathbf{m}) \mod Q$

Gadget

Goal: compute short **x** such $\mathbf{A} \cdot \mathbf{x} = \mathcal{H}(\mathbf{m}) \mod Q$

Gadget from [MP12]

Family of A, T and G such that:

 $\mathbf{AT} = \mathbf{G} \mod Q$ Public Key: **A** Private Key: **T** Gadget: **G**

Compute z so that $\mathbf{G} \cdot \mathbf{z} = \mathcal{H}(\mathbf{m}) \mod Q$, and return $\mathbf{x} = \mathbf{T}\mathbf{z}$ as preimage of $\mathcal{H}(\mathbf{m})$

Gadget

Goal: compute short **x** such $\mathbf{A} \cdot \mathbf{x} = \mathcal{H}(m) \mod Q$

Gadget from [MP12]

Family of A, T and G such that:

 $\mathbf{AT} = \mathbf{G} \mod Q$ Public Key: **A** Private Key: **T** Gadget: **G**

Compute z so that $\mathbf{G} \cdot \mathbf{z} = \mathcal{H}(\mathsf{m}) \mod Q$, and return $\mathbf{x} = \mathsf{T}\mathbf{z}$ as preimage of $\mathcal{H}(\mathsf{m})$

- \times Collecting many preimages will leak T...
- ✓ Add mask **p**: preimages $\mathbf{x} = \mathbf{p} + \mathbf{T}\mathbf{z}$ and the target become $\mathbf{u} = \mathcal{H}(m) - \mathbf{A}\mathbf{p}$ instead of $\mathcal{H}(m)$

Compact gadget:

$$p\mathbf{l}, q\mathbf{l} \in \mathbb{Z}^{n \times n}$$
 such that $p\mathbf{l} \cdot q\mathbf{l} = Q \cdot \mathbf{l}$ with $Q = p \cdot q$.

Trapdoor:

$$AT = pI \mod Q$$

LWE-based construction:

$$\mathbf{A} = \begin{bmatrix} \mathbf{I} \mid \hat{\mathbf{A}} \mid p\mathbf{I} - \hat{\mathbf{A}}\mathbf{S} - \mathbf{E} \end{bmatrix}, \quad \mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{S} \\ \mathbf{I} \end{pmatrix}$$

Compact gadget:

$$p\mathbf{l}, q\mathbf{l} \in \mathbb{Z}^{n \times n}$$
 such that $p\mathbf{l} \cdot q\mathbf{l} = Q \cdot \mathbf{l}$ with $Q = p \cdot q$.

Trapdoor:

$$\mathbf{AT} = p\mathbf{I} \mod Q$$

LWE-based construction:

$$\mathbf{A} = \begin{bmatrix} \mathbf{I} \mid \hat{\mathbf{A}} \mid \rho \mathbf{I} - \hat{\mathbf{A}}\mathbf{S} - \mathbf{E} \end{bmatrix}, \quad \mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{S} \\ \mathbf{I} \end{pmatrix}$$

Objective: Invert $f_{pl} : \mathbf{x} \mapsto pl\mathbf{x} \mod Q$, i.e.,

$$p \mathbf{l} \mathbf{x} = \mathbf{u} - e \mod Q$$

Compact gadget:

$$p\mathbf{l}, q\mathbf{l} \in \mathbb{Z}^{n \times n}$$
 such that $p\mathbf{l} \cdot q\mathbf{l} = Q \cdot \mathbf{l}$ with $Q = p \cdot q$.

Trapdoor:

$$AT = pI \mod Q$$

LWE-based construction:

$$\mathbf{A} = \begin{bmatrix} \mathbf{I} \mid \hat{\mathbf{A}} \mid \rho \mathbf{I} - \hat{\mathbf{A}} \mathbf{S} - \mathbf{E} \end{bmatrix}, \quad \mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{S} \\ \mathbf{I} \end{pmatrix}$$

Objective: Invert $f_{pl} : \mathbf{x} \mapsto pl\mathbf{x} \mod Q$, i.e.,

$$p \mathbf{l} \mathbf{x} = \mathbf{u} - e \mod Q$$

Deterministic error decoding: Compute *e* such that $\mathbf{u} - e = p \mathbf{l} \mathbf{v} \in p \cdot \mathbb{Z}^n$.

Compact gadget:

$$p\mathbf{l}, q\mathbf{l} \in \mathbb{Z}^{n \times n}$$
 such that $p\mathbf{l} \cdot q\mathbf{l} = Q \cdot \mathbf{l}$ with $Q = p \cdot q$.

Trapdoor:

$$AT = pI \mod Q$$

LWE-based construction:

$$\mathbf{A} = \begin{bmatrix} \mathbf{I} \mid \hat{\mathbf{A}} \mid \rho \mathbf{I} - \hat{\mathbf{A}}\mathbf{S} - \mathbf{E} \end{bmatrix}, \quad \mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{S} \\ \mathbf{I} \end{pmatrix}$$

Objective: Invert $f_{p1} : \mathbf{x} \mapsto p \mathbf{x} \mod Q$, i.e.,

$$p \mathbf{l} \mathbf{x} = \mathbf{u} - e \mod Q$$

Deterministic error decoding: Compute *e* such that $\mathbf{u} - e = p \mathbf{l} \mathbf{v} \in p \cdot \mathbb{Z}^n$. **Random preimage sampling:** Sample short $\mathbf{z} \in q \cdot \mathbb{Z}^n + \mathbf{v}$ using Gaussian sampling.

Compact gadget:

$$p\mathbf{l}, q\mathbf{l} \in \mathbb{Z}^{n \times n}$$
 such that $p\mathbf{l} \cdot q\mathbf{l} = Q \cdot \mathbf{l}$ with $Q = p \cdot q$.

Trapdoor:

$$AT = pI \mod Q$$

LWE-based construction:

$$\mathbf{A} = \begin{bmatrix} \mathbf{I} \mid \hat{\mathbf{A}} \mid \rho \mathbf{I} - \hat{\mathbf{A}} \mathbf{S} - \mathbf{E} \end{bmatrix}, \quad \mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{S} \\ \mathbf{I} \end{pmatrix}$$

Objective: Invert $f_{p1} : \mathbf{x} \mapsto p \mathbf{x} \mod Q$, i.e.,

$$p \mathbf{l} \mathbf{x} = \mathbf{u} - e \mod Q$$

Deterministic error decoding: Compute *e* such that $\mathbf{u} - e = p \mathbf{l} \mathbf{v} \in p \cdot \mathbb{Z}^n$. **Random preimage sampling:** Sample short $\mathbf{z} \in q \cdot \mathbb{Z}^n + \mathbf{v}$ using Gaussian sampling. **Correctness:**

$$p \mathbf{z} = p \mathbf{I}(q \mathbf{y} + \mathbf{v}) = Q \mathbf{y} + \mathbf{u} - e = \mathbf{u} - e \mod Q$$

Key Generation

1. Secret key:
$$\mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{I} \end{pmatrix}$$

2. Public key: $\mathbf{A} = [\mathbf{I}, \widehat{\mathbf{A}}, \mathbf{B}]$ and $\mathbf{B} = \mathbf{P} - (\widehat{\mathbf{A}}\mathbf{S} + \mathbf{E})$
• $\mathbf{A} \cdot \mathbf{T} = \mathbf{P}$

Verification

1.
$$\mathbf{x}'_{\mathbf{0}} = \mathcal{H}(\mathbf{m}) - \widehat{\mathbf{A}}\mathbf{x}_{\mathbf{1}} - \mathbf{B}\mathbf{x}_{\mathbf{2}}$$

2. Accept if $\|\mathbf{x}_{0}', \mathbf{x}_{1}, \mathbf{x}_{2}\| < B$

Sign

- 1. Sample **p** from a short Gaussian \mathcal{D}_{T} .
- 2. $\mathbf{u} = \mathcal{H}(\mathbf{m}) \mathbf{A}\mathbf{p} \mod Q$

3.
$$\mathbf{v} = \lfloor \mathbf{u}/p \rfloor \mod Q$$

4. Sample
$$\mathbf{z} \leftrightarrow D_{q \cdot \mathbb{Z}^k + \mathbf{v}, \overline{r}^2}$$
.

5.
$$(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2) = \begin{pmatrix} \mathbf{E} \\ \mathbf{S} \\ \mathbf{I} \end{pmatrix} \mathbf{z} + \mathbf{p} \mod Q$$

6. if $\|\mathbf{x}_0 + e, \mathbf{x}_1, \mathbf{x}_2\| < B$

7. return
$$(\mathbf{x}_1, \mathbf{x}_2)$$

Key Generation

1. Secret key:
$$\mathbf{T} = \begin{pmatrix} \mathbf{E} \\ \mathbf{I} \end{pmatrix}$$

2. Public key: $\mathbf{A} = [\mathbf{I}, \widehat{\mathbf{A}}, \mathbf{B}]$ and $\mathbf{B} = \mathbf{P} - (\widehat{\mathbf{A}}\mathbf{S} + \mathbf{E})$
• $\mathbf{A} \cdot \mathbf{T} = \mathbf{P}$

Verification

1.
$$\mathbf{x}'_{\mathbf{0}} = \mathcal{H}(\mathbf{m}) - \widehat{\mathbf{A}}\mathbf{x}_{\mathbf{1}} - \mathbf{B}\mathbf{x}_{\mathbf{2}}$$

2. Accept if $\|\mathbf{x}_{0}', \mathbf{x}_{1}, \mathbf{x}_{2}\| < B$

Sign

- 1. Sample **p** from a short Gaussian \mathcal{D}_{T} .
- 2. $\mathbf{u} = \mathcal{H}(\mathbf{m}) \mathbf{A}\mathbf{p} \mod Q$

3.
$$\mathbf{v} = \lfloor \mathbf{u}/p \rfloor \mod Q$$

4. Sample
$$\mathbf{z} \leftrightarrow D_{q \cdot \mathbb{Z}^k + \mathbf{v}, \bar{r}^2}$$
.

5.
$$(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2) = \begin{pmatrix} \mathsf{E} \\ \mathsf{S} \\ \mathsf{I} \end{pmatrix} \mathsf{z} + \mathsf{p} \mod Q$$

6. if $\|\mathbf{x}_0 + e, \mathbf{x}_1, \mathbf{x}_2\| < B$

7. return
$$(\mathbf{x}_1, \mathbf{x}_2)$$

Targeted operations: $S_{i,j} \cdot z_i$ (resp. $E_{i,j} \cdot z_i$)

Targeted operations: $S_{i,j} \cdot z_i$ (resp. $E_{i,j} \cdot z_i$)

Coefficients of **S** (resp. **E**) are ternary and follow a binomial distribution. \rightarrow only three possible outputs for $\mathbf{S}_{i,j} \cdot \mathbf{z}_i$: **Targeted operations:** $S_{i,j} \cdot z_i$ (resp. $E_{i,j} \cdot z_i$)

Coefficients of **S** (resp. **E**) are ternary and follow a binomial distribution. \rightarrow only three possible outputs for $S_{i,j} \cdot z_i$:

- $1. \ 0, \ setting the Hamming weight to <math display="inline">0.$
- 2. \mathbf{z}_i , keeping the Hamming weight identical.
- 3. $-\mathbf{z}_i$, greatly changing the Hamming weight.

Overview

Two Attack scenarios:

Given an LWE sample As + e and some 0s of s and e, how do we exploit them?

Given an LWE sample As + e and some 0s of s and e, how do we exploit them?

• Remove the *i*-th column of **A** if $s_i = 0$: dimension reduced by one.

Given an LWE sample As + e and some 0s of s and e, how do we exploit them?

- Remove the *i*-th column of **A** if $s_i = 0$: dimension reduced by one.
- Write b_i = (a_i, s) if e_i = 0. Dimension reduced by one. Some rewriting involved to find a new LWE instance with one less dimension.

What is the cost of BKZ on the new LWE instance once every hint has been incorporated?

Key recovery with 0 knowledge

Goal: Find all zeros of ${\bf S}$ and ${\bf E}$

# Traces	Recovered	False Positives
200	93.4%	0.12%
600	97.9%	0%
1500	98.5%	0%

# Traces	Recovered	False Positives
200	93.4%	0.12%
600	97.9%	0%
1500	98.5%	0%

Countermeasure

$$\mathbf{x}_0 = \mathbf{E}\mathbf{z} + \mathbf{p} \mod Q$$

can be replaced by

$$\mathbf{x_0'} = \mathcal{H}(\mathbf{m}) - \widehat{\mathbf{A}}\mathbf{x_1} - \mathbf{B}\mathbf{x_2} \mod Q$$

which involves only public values.

# Traces	Recovered	False Positives
200	93.4%	0.12%
600	97.9%	0%
1500	98.5%	0%

Countermeasure

$$\mathbf{x}_0 = \mathbf{E}\mathbf{z} + \mathbf{p} \mod Q$$

can be replaced by

$$\mathbf{x_0'} = \mathcal{H}(\mathbf{m}) - \widehat{\mathbf{A}}\mathbf{x_1} - \mathbf{B}\mathbf{x_2} \mod Q$$

which involves only public values.

Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of z_i . But we can only do it for half of the values of z_i . \rightarrow only 75% of **S** can be recovered (without false positives)

Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of z_i . But we can only do it for half of the values of z_i . \rightarrow only 75% of **S** can be recovered (without false positives)

Key recovery can be compromised..

Forgery with more knowledge

New SCA

We attack the Gaussian sampler to recover information of the sign of z_i . But we can only do it for half of the values of z_i . \rightarrow only 75% of **S** can be recovered (without false positives)

Key recovery can be compromised..

But we can forge !

Assuming the first k columns S_k of S are known via the previous attack, what can we do with them?

Assuming the first k columns S_k of S are known via the previous attack, what can we do with them?

• If the target is
$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{0} \end{pmatrix}$$
, then we set $\mathbf{p} = \mathbf{0}$, $\mathbf{v} = \lfloor \mathbf{u}/p \rfloor$ and $\mathbf{z} = \mathbf{v}$. A signature would then be:
$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{S} \\ \mathbf{I}_m \end{pmatrix} \cdot \mathbf{z} = \begin{pmatrix} \mathbf{S}_k & \mathbf{0} \\ \mathbf{I}_k & \mathbf{0} \end{pmatrix} \cdot \mathbf{z}.$$

Assuming the first k columns S_k of S are known via the previous attack, what can we do with them?

• If the target is
$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{0} \end{pmatrix}$$
, then we set $\mathbf{p} = \mathbf{0}$, $\mathbf{v} = \lfloor \mathbf{u}/p \rfloor$ and $\mathbf{z} = \mathbf{v}$. A signature would then be:
$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{S} \\ \mathbf{I}_m \end{pmatrix} \cdot \mathbf{z} = \begin{pmatrix} \mathbf{S}_k & \mathbf{0} \\ \mathbf{I}_k & \mathbf{0} \end{pmatrix} \cdot \mathbf{z}.$$

This vector is short, but which message did we sign?

Finding specific vectors

• Choose any μ and compute $\mathbf{u} = H(\mu) = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}$.

• Write
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_h \\ \mathbf{A}_l \end{pmatrix}$$

• Find short \mathbf{x}' such that $\mathbf{A}_I \mathbf{x}' = \mathbf{u}_2$ with lattice reduction

• Set
$$\mathbf{u}' = \mathbf{u} - \mathbf{A}\mathbf{x}' = \begin{pmatrix} \mathbf{u}_1' \\ \mathbf{0} \end{pmatrix}$$

• We are back to the previous case!

We start by gathering d coefficients per column.

- First step: complete k columns via lattice reduction: k times LWE with dimension reduced by d
- Second step: one more lattice reduction to find \mathbf{x}' : dimension reduced by k.
- Third step: forgery for specific vectors (essentially free)

All that remains is to optimize over k.

Final Cost

Conclusion

Two Attack scenarios:

Hint-(M)LWE

Recover from an LWE instance **s** with additional knowledge: $\mathbf{z}_i = \mathbf{y}_i + \mathbf{c}_i \cdot \mathbf{s}$

Can be used to construct primitive, and estimate residual security with reduction from Hint-MLWE to MLWE.

Hint-(M)LWE

Recover from an LWE instance **s** with additional knowledge: $\mathbf{z}_i = \mathbf{y}_i + \mathbf{c}_i \cdot \mathbf{s}$

Can be used to construct primitive, and estimate residual security with reduction from Hint-MLWE to MLWE.