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PRNG

• Randomness is crucial in cryptography.

• True randomness is expensive.

• Indistinguishability is a thing

True random seed PRNG
Flow of pseudo-random
numbers
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Security of PRNG

A PRNG is weak if :

• The flow is not indistinguishable from true randomness

• Worse, further outputs are predictable

• Even worse, we can retrieve the seed from a reasonable
number of outputs.

seed PRNG flow

easy

hard
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(almost) Knapsack Problem

t kg

ω1 kg ω2 kg

ω3 kg ω4 kg

What is in the knapsack ?
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Subset Sum Problem

Mathematic version

The weight list: ω = (ω1, . . . , ωn) ∈ {0, N}n
The secret composition: u = (u1, . . . , un) ∈ {0, 1}n
The target weight: v =

∑
ωiui = ⟨ω,u⟩

The Subset Sum Problem is NP-hard and remain hard if we replace
v by v mod N as long as N ≃ 2n.
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Knapsack Generator by Rueppel and Massey1

u ⟨ω, .⟩ mod 2n v

u weakPRNG

u1

u2

u3

⟨ω, .⟩ mod 2n

⟨ω, .⟩ mod 2n

⟨ω, .⟩ mod 2n

v1

v2

v3

easy

hard(?)

u weakPRNG

u1

u2

u3

⟨ω, .⟩ mod 2n

⟨ω, .⟩ mod 2n

⟨ω, .⟩ mod 2n

v1

v2

v3

s1

s2

s3

//2ℓ

//2ℓ

//2ℓ

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)
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We call δi the truncated bits : vi = 2ℓsi + δi.

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
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Weakness, FSE 2011

secret : u + ω

n bits n2 bits

32 bits 1024 bits

Can we distinguish between the u ?
Yes, with OmegaRetriever
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Distinguish between u

We consider m outputs and s = (s1, . . . , sm).

OmegaRetriever: u, s → ω′ close to ω
u′, s → ω′′ not close to ω

KnapsackGen(u,ω′) will be close to KnapsackGen(u,ω).
KnapsackGen(u′,ω′′) will be not.
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OmegaRetriever from FSE 2011

We consider m outputs and a given u.

• u
wPRNG−→ u1, . . . , um

• U =

u1
. . .
um


• v = U × ω mod 2n

• v = 2ℓs+ δ

• δ is small (< 2ℓ)

U × ω ≡ 2ℓs+ δ mod 2n

We construct T such that :

• TU = Id mod 2n (polynomial)

• T small (implies solving CVPs)

ω = T2ℓs+ Tδ
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OmegaRetriever from FSE 2011 (part 2)

We now have

• δ small

• T small

• ω = T2ℓs+ Tδ

ω′ = T2ℓs

∥ω − ω′∥ ≤ ∥T∥∥δ∥

Experimental results are close to the bound.
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Closest Vector Problem

+
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New OmegaRetriever

We consider m outputs and a given u.

1. v = U × ω mod 2n

2. v = 2ℓs+ δ
3. δ is small.

1. −→ v ∈ Λ
2. and 3. −→ v is close to 2ℓs

where Λ = {U × x mod 2n|x ∈ Zn}

v′ = CVP(Λ, 2ℓs) ̸= v

But ω′ defined as U × ω′ ≡ v′ mod 2n is close to ω!
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Why does it work ?

• v − v′ is small and equal to U × (ω − ω′) mod 2n

• U small because in M({0, 1})

• U small and ω − ω′ small ⇒ v − v′ small.

• U small and v − v′ small HH⇒ ω − ω′ small
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A First Idea

In the first attack was constructed a small T pseudo inverse of U .
Then

• ω − ω′ = T × (v − v′) mod 2n

• We can bound T and (v − v′)

• BUT ∥ω − ω′∥ ≪ ∥T∥ × ∥(v − v′)∥
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A Second Idea

1 We know that v − v′ is
small (≤ K) and in Λ.

2 If ∥x∥ < K/∥U∥, then
∥Ux∥ < K.

3 How do I know that
(v − v′) is a red point ?

We denote AK the set of red points

|AK | = (2× ⌊K/∥U∥⌋ − 1)n

We denote BK the set of points in the ball
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How many point in BK ?

Gaussian Heuristic : |BK | ≃ V olume(Ball)/V olume(Λ)

20 / 22



How many point in BK ?

Gaussian Heuristic : |BK | ≃ V olume(Ball)/V olume(Λ)

20 / 22



How many point in BK ?

Gaussian Heuristic : |BK | ≃ V olume(Ball)/V olume(Λ)

20 / 22



In the case where n = 32, m = 42 and ℓ ≤ 15,

|AK | ≥ |BK | with K = 2ℓ+1

Thus v − v′ is a red point and ∥ω − ω′∥ < K/∥U∥.

21 / 22



Experimental results

ℓ 5 10 15 20 25

m 34 40 34 40 34 40 35 40 39 40

✓bits (over 32) 27 28 22 23 5 18 4 13 6 8

Figure: Quality of ω′ for n = 32

ℓ 5 10 15 20

m 34 40 35 40 36 40 41

✓bits (over 32) 10 22 10 17 8 12 6

Figure: Quality of ω′ for n = 32 for FSE 2011 algorithm

Thank you for your attention,
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