Variations on the Knapsack Generator

Florette Martinez

Université Picardie - École d'ingénieurs Jules Verne

April 24, 2025, at WRACH

KNAPSACK GENERATOR

Table of Contents

1 Definitions:

2 First attack against the Knapsack Generator

3 New attack against the Knapsack Generator

PRNG

• Randomness is crucial in cryptography.

- Randomness is crucial in cryptography.
- True randomness is expensive.

- Randomness is crucial in cryptography.
- True randomness is expensive.
- Indistinguishability is a thing

- Randomness is crucial in cryptography.
- True randomness is expensive.
- Indistinguishability is a thing

A PRNG is weak if :

• The flow is not indistinguishable from true randomness

A PRNG is weak if :

- The flow is not indistinguishable from true randomness
- Worse, further outputs are **predictable**

A PRNG is weak if :

- The flow is not indistinguishable from true randomness
- Worse, further outputs are **predictable**
- Even worse, we can **retrieve the seed** from a reasonable number of outputs.

A PRNG is weak if :

- The flow is not indistinguishable from true randomness
- Worse, further outputs are **predictable**
- Even worse, we can **retrieve the seed** from a reasonable number of outputs.

(almost) Knapsack Problem

What is in the knapsack ?

Subset Sum Problem

Mathematic version

The weight list: The secret composition: The target weight:

$$\boldsymbol{\omega} = (\omega_1, \dots, \omega_n) \in \{0, N\}^n$$
$$\mathbf{u} = (u_1, \dots, u_n) \in \{0, 1\}^n$$
$$v = \sum \omega_i u_i = \langle \boldsymbol{\omega}, \mathbf{u} \rangle$$

Subset Sum Problem

Mathematic version

 $\begin{array}{ll} \text{The weight list:} & \boldsymbol{\omega} = (\omega_1, \dots, \omega_n) \in \{0, N\}^n \\ \text{The secret composition:} & \mathbf{u} = (u_1, \dots, u_n) \in \{0, 1\}^n \\ \text{The target weight:} & v = \sum \omega_i u_i = \langle \boldsymbol{\omega}, \mathbf{u} \rangle \\ \end{array}$

The Subset Sum Problem is NP-hard and remain hard if we replace v by $v \mod N$ as long as $N \simeq 2^n$.

$$\mathbf{u} \longrightarrow \langle \boldsymbol{\omega}, . \rangle \bmod 2^n \longrightarrow v$$

¹Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern. Symp. of Inform. Theory, vol. 46 (1985)

We call δ_i the truncated bits : $v_i = 2^{\ell} s_i + \delta_i$.

¹Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern. Symp. of Inform. Theory, vol. 46 (1985)

Table of Contents

2 First attack against the Knapsack Generator

3 New attack against the Knapsack Generator

secret : u + ω

secret : u + ω n bits n^2 bits

secret : u + ω n bits n^2 bits

32 bits 1024 bits

32 bits 1024 bits

Can we distinguish between the u ?

secret : u + ω n bits n^2 bits

32 bits 1024 bits

Can we distinguish between the u ? Yes, with OMEGARETRIEVER

Distinguish between u

We consider m outputs and $\mathbf{s} = (s_1, \ldots, s_m)$.

Distinguish between u

We consider m outputs and $\mathbf{s} = (s_1, \ldots, s_m)$.

KNAPSACKGEN (u, ω') will be close to KNAPSACKGEN (u, ω) . KNAPSACKGEN (u', ω'') will be not.

•
$$\mathbf{u} \stackrel{wPRNG}{\longrightarrow} u_1, \dots, u_m$$

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
• $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$

•
$$\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$$

•
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$

• $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$

•
$$\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$$

• δ is small (< 2^{ℓ})

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
• $U = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta} \text{ is small } (< 2^{\ell})$
 $U \times \boldsymbol{\omega} \equiv 2^{\ell} \mathbf{s} + \boldsymbol{\delta} \mod 2^n$

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
• $U = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta} \text{ is small } (< 2^{\ell})$

We construct T such that :

• $TU = Id \mod 2^n$ (polynomial)

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
• $U = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta} \text{ is small } (< 2^{\ell})$

We construct T such that :

- $TU = Id \mod 2^n$ (polynomial)
- T small (implies solving CVPs)

We consider m outputs and a given \mathbf{u} .

•
$$\mathbf{u} \xrightarrow{wPRNG} u_1, \dots, u_m$$

• $U = \begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
• $U = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$
• $\boldsymbol{\delta} \text{ is small } (< 2^{\ell})$

We construct T such that :

- $TU = Id \mod 2^n$ (polynomial)
- T small (implies solving CVPs)

$$\boldsymbol{\omega} = T2^{\ell} \mathbf{s} + T\boldsymbol{\delta}$$

OmegaRetriever from FSE 2011 (part 2)

We now have

- δ small
- T small
- $\boldsymbol{\omega} = T2^{\ell}\mathbf{s} + T\boldsymbol{\delta}$

OmegaRetriever from FSE 2011 (part 2)

We now have

- δ small
- T small

•
$$\boldsymbol{\omega} = T2^{\ell}\mathbf{s} + T\boldsymbol{\delta}$$

$$\omega' = T2^{\ell} \mathbf{s}$$

$$\|\boldsymbol{\omega} - \boldsymbol{\omega}'\| \le \|T\| \|\boldsymbol{\delta}\|$$

OmegaRetriever from FSE 2011 (part 2)

We now have

- δ small
- T small

•
$$\boldsymbol{\omega} = T2^{\ell}\mathbf{s} + T\boldsymbol{\delta}$$

$$\boldsymbol{\omega}' = T2^{\ell} \mathbf{s}$$

$$\|\boldsymbol{\omega} - \boldsymbol{\omega}'\| \le \|T\| \|\boldsymbol{\delta}\|$$

Experimental results are close to the bound.

Table of Contents

1 Definitions:

2 First attack against the Knapsack Generator

3 New attack against the Knapsack Generator

We consider m outputs and a given \mathbf{u} .

- 1. $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$
- 2. $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$

3. δ is small.

We consider m outputs and a given \mathbf{u} .

1. $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$ 2. $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ 3. $\boldsymbol{\delta}$ is small. 1. $\longrightarrow \mathbf{v} \in \Lambda$ 2. and 3. $\longrightarrow \mathbf{v}$ is close to $2^{\ell} \mathbf{s}$ where $\Lambda = \{U \times x \mod 2^n | x \in \mathbb{Z}^n\}$

We consider m outputs and a given \mathbf{u} .

1. $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$ 2. $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ 1. $\longrightarrow \mathbf{v} \in \Lambda$ 2. and 3. $\longrightarrow \mathbf{v} \in \Lambda$ where $\Lambda = \{U \times x \mod 2^n | x \in \mathbb{Z}^n\}$ $\mathbf{v}' = \mathsf{CVP}(\Lambda, 2^{\ell} \mathbf{s})$

We consider m outputs and a given \mathbf{u} .

1. $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$ 2. $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ 1. $\longrightarrow \mathbf{v} \in \Lambda$ 2. and 3. $\longrightarrow \mathbf{v} \text{ is close to } 2^{\ell} \mathbf{s}$ where $\Lambda = \{U \times x \mod 2^n | x \in \mathbb{Z}^n\}$ $\mathbf{v}' = \text{CVP}(\Lambda, 2^{\ell} \mathbf{s}) \neq \mathbf{v}$

We consider m outputs and a given \mathbf{u} .

1. $\mathbf{v} = U \times \boldsymbol{\omega} \mod 2^n$ 2. $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ 1. $\longrightarrow \mathbf{v} \in \Lambda$ 2. and 3. $\longrightarrow \mathbf{v}$ is close to $2^{\ell} \mathbf{s}$ where $\Lambda = \{U \times x \mod 2^n | x \in \mathbb{Z}^n\}$ $\mathbf{v}' = \mathsf{CVP}(\Lambda, 2^{\ell} \mathbf{s}) \neq \mathbf{v}$

But ω' defined as $U \times \omega' \equiv \mathbf{v}' \mod 2^n$ is close to $\omega!$

Why does it work ?

- $\mathbf{v} \mathbf{v}'$ is small and equal to $U imes (\boldsymbol{\omega} \boldsymbol{\omega}') mod 2^n$
- U small because in $\mathcal{M}(\{0,1\})$

Why does it work ?

- $\mathbf{v} \mathbf{v}'$ is small and equal to $U imes (\boldsymbol{\omega} \boldsymbol{\omega}') mod 2^n$
- U small because in $\mathcal{M}(\{0,1\})$
- U small and $\boldsymbol{\omega} \boldsymbol{\omega}'$ small $\Rightarrow \mathbf{v} \mathbf{v}'$ small.

Why does it work ?

- $\mathbf{v} \mathbf{v}'$ is small and equal to $U imes (\boldsymbol{\omega} \boldsymbol{\omega}') ext{ mod } 2^n$
- U small because in $\mathcal{M}(\{0,1\})$
- U small and $\boldsymbol{\omega} \boldsymbol{\omega}'$ small $\Rightarrow \mathbf{v} \mathbf{v}'$ small.
- U small and $\mathbf{v} \mathbf{v}'$ small $\Rightarrow \boldsymbol{\omega} \boldsymbol{\omega}'$ small

A First Idea

In the first attack was constructed a small ${\cal T}$ pseudo inverse of U. Then

A First Idea

In the first attack was constructed a small ${\cal T}$ pseudo inverse of U. Then

•
$$\boldsymbol{\omega} - \boldsymbol{\omega}' = T \times (\mathbf{v} - \mathbf{v}') \mod 2^n$$

In the first attack was constructed a small ${\cal T}$ pseudo inverse of U. Then

- $\boldsymbol{\omega} \boldsymbol{\omega}' = T \times (\mathbf{v} \mathbf{v}') \mod 2^n$
- We can bound T and $(\mathbf{v} \mathbf{v'})$

In the first attack was constructed a small T pseudo inverse of $U. \label{eq:constructed}$ Then

- $\boldsymbol{\omega} \boldsymbol{\omega}' = T \times (\mathbf{v} \mathbf{v}') \mod 2^n$
- We can bound T and $(\mathbf{v}-\mathbf{v}')$
- BUT $\|\boldsymbol{\omega} \boldsymbol{\omega}'\| \ll \|T\| \times \|(\mathbf{v} \mathbf{v}')\|$

1 We know that $\mathbf{v} - \mathbf{v}'$ is small $(\leq K)$ and in Λ .

- **1** We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- 2 If ||x|| < K/||U||, then ||Ux|| < K.

- **1** We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- **2** If ||x|| < K/||U||, then ||Ux|| < K.
- $\begin{array}{l} \textbf{3} \ \mbox{How do I know that} \\ (\mathbf{v}-\mathbf{v}') \ \mbox{is a red point }? \end{array}$

- We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- **2** If ||x|| < K/||U||, then ||Ux|| < K.
- 3 How do I know that $(\mathbf{v}-\mathbf{v}') \text{ is a red point } ?$

We denote A_K the set of red points

$$|A_K| = (2 \times \lfloor K/\|U\|\rfloor - 1)^n$$

- We know that $\mathbf{v} \mathbf{v}'$ is small $(\leq K)$ and in Λ .
- **2** If ||x|| < K/||U||, then ||Ux|| < K.
- $\begin{array}{l} \textbf{3} \mbox{ How do I know that} \\ (\mathbf{v}-\mathbf{v}') \mbox{ is a red point }? \end{array}$

We denote A_K the set of red points

$$|A_K| = (2 \times \lfloor K/\|U\|\rfloor - 1)^n$$

We denote B_K the set of points in the ball

How many point in B_K ?

How many point in B_K ?

How many point in B_K ?

Gaussian Heuristic : $|B_K| \simeq Volume(Ball)/Volume(\Lambda)$

In the case where n = 32, m = 42 and $\ell \le 15$,

 $|A_K| \ge |B_K|$ with $K = 2^{\ell+1}$

Thus $\mathbf{v} - \mathbf{v}'$ is a red point and $\|\boldsymbol{\omega} - \boldsymbol{\omega}'\| < K/\|U\|$.

Experimental results

l	5		10		15		20		25	
m	34	40	34	40	34	40	35	40	39	40
√bits (over 32)	27	28	22	23	5	18	4	13	6	8

Figure: Quality of ω' for n = 32

l	5		10		15		20
m	34	40	35	40	36	40	41
√bits (over 32)	10	22	10	17	8	12	6

Figure: Quality of ω' for n=32 for FSE 2011 algorithm

Thank you for your attention,