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Sensitive variable x

Each strict subset of (x;);<;<, is independent from x

Xis Xy eees X1 < 3

X, —X—X+X+...+x,_)
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Masking linear operations

X=XgDx D...Dx,_;4

77— XD
Y y=YDyi®D... DYy,

1 — (X()@Y(),xl @)’1, ey Ay Gayn—l)

Masking non linear operations
= Cannot be done share by share

= Example of multiplication for n = 2

X = Xy D X
Z XY D X0y D X1y D X1y, % = XoYo D Xo¥)

Y=Yy D®Yy; 21 < X1V D X1
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From a gadget to a circuit

A o) ki ky
A Multiplication gadget

<1 + iy = (.Xl + X2) . (kl + kz)

r<—$%

r'— xiky—r

r’ — r' + xk

2y — 1"+ x5k,
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From a gadget to a circuit

X A2 kl k2
A Multiplication gadget
<1 + iy = (Xl +X2) y (kl + kz)
r—$
) 21 < Xtk +r
. r'— xiky—r

r’ — r' + xk

C)/ 2y — 1"+ x5k,

<

B Add X)) Mult
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From a gadget to a circuit

A1 %%) kl k2
A Multiplication gadget
Zl + Z2 — (Xl +.X2) . (kl + kz)
r<—$
@ X Zl <« x1k1 +r
7 r, <« xlk2 — r

r’ — r'+ xk

C/ \) Zp < I+ Xk

<

B Add X)) Mult
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From a gadget to a circuit

A Multiplication gadget
/ Z1+Z2= (X1+X2)'(k1+k2)

r«—$
@ X X Z1<_x1k1+r

r'—xik,—r

r”(— r,+ka1

C/ \) Zp < I+ Xk

B Add X)) Mult
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ky
A Multiplication gadget
/ Z1+Z2= (X1+X2)'(k1+k2)

r—9$
® Z1<_x1k1+r

r'—xik,—r

r'’ < r'+ xk;

z, < 1+ X%k,
o o
®\@

<

@O Add X Mult
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ky
A Multiplication gadget
/ Z1+Z2= (X1+X2)'(k1+k2)

r—9$
® Z1<_x1k1+r

r'—xik,—r

| r'’ < r'+ xk;

C/ 2y < '+ x5k,

<

O Add & Mult () Copy
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ky
A Multiplication gadget
/ Z1+Z2= (X1+.X2)'(k1+k2)

r<—$%
® Z1<_x1k1+7'

r'— xjk,—r

| r’ <« r'+ xk

Z2 <« r” + x2k2
_|_ —_—

\ Attacker model

®\GD The attacker is given the design of the circuit and some extra information about the wires.

He/she must not recover any information about x = 2 x;and k = 2 k;.

<

B & Add X Mult (D Copy
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ky
A Multiplication gadget
/ Z1+Z2: (XI+X2)'(k1+k2)

r<—$%
® Z1<—x1k1+r

r'— xjk,—r

| r’ <« r'+ xk

2y < '+ x5k,
_|_ —

\ Attacker model

®\GD The attacker is given the design of the circuit and some extra information about the wires.

He/she must not recover any information about x = Z x;and k = 2 k;.

Z %) |. t-probing model

1
2. Random probing model
@ @ Add @ Mult <[D COP)' 3. Noisy leakage model
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ki
/ Attacker model

\ The attacker can ask for the value of at most ¢ wires.
X

[ISWO03] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks.
CRYPTO 2003,

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



kl
/ Attacker model
\ 'The attacker can ask for the value of at most ¢ wires. '

t-probing security

C‘E/ — \ Let & be a set of at most ¢ probes :t

Let (x, ..., %, 1), (k{5 ..., k1) be uniform encodings of inputs x and k.
@\GD The distribution of & is independent from the secrets Z x; and Z k;.
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Attacker model

'The attacker can ask for the value of at most 7 wires. '

t-probing security
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Attacker model

'The attacker can ask for the value of at most 7 wires. '

t-probing security

C‘E/ — \ Let & be a set of at most ¢ probes :t

Let (x, ..., %, 1), (k{5 ..., k1) be uniform encodings of inputs x and k.
@\GD The distribution of & is independent from the secrets Z x; and Z k;.

<1 %, P =4
Knowing £ = 4 the probability of (x =35, k = 6) is the same as for any other value.

[ISWO03] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks.
CRYPTO 2003,
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k, Composability : 7-Non Interference

Let & be a set of at most ¢ probes :t

Let (x{, ..., X, 1), (k{5 ..., k) be encodings of inputs x and k.
\ Let £ « AssignWires(, (x, ..., X,.1), (k{, ..., k1)) be the values taken by the probes.

r There exists a 2-stage simulator such that

C)/ I,I, < SimIn(P)with |I.| <tand |[| <t

out < SimOut(x, Is k, 1)

perfect
andout ~ &
_D

[BBD+16] G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini.
Strong non-interference and type-directed higher-order masking. ACM CCS 2016
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Xq Xy ki k, Composability : 7-Non Interference

X = X, =2 k =2 k, = t
/ Let & be a set of at most ¢ probes :
Let (x{, ..., X, 1), (k{5 ..., k) be encodings of inputs x and k.
\ Let £ « AssignWires(, (x, ..., X,.1), (k{, ..., k1)) be the values taken by the probes.

’l’ @\ There exists a 2-stage simulator such that
[,I, < SimIn(&) with || <tand |[| L1
n ~ out « SImOut(x;;, kj; )
\ perfect
andout ~ &
O,

[BBD+16] G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini.
Strong non-interference and type-directed higher-order masking. ACM CCS 2016

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



Xq Xy ki k, Composability : 7-Non Interference

X = X, =2 k =2 k, = t
/ Let & be a set of at most ¢ probes :
Let (x{, ..., X, 1), (k{5 ..., k) be encodings of inputs x and k.
\ Let £ « AssignWires(, (x, ..., X,.1), (k{, ..., k1)) be the values taken by the probes.

r @\ There exists a 2-stage simulator such that
|
Z =4
[,I, < SimIn(&) with || <tand |[| L1
n ~ out « SImOut(x;;, kj; )
\ perfect
andout ~ &
_D

[BBD+16] G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini.
Strong non-interference and type-directed higher-order masking. ACM CCS 2016

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



Xq Xy ki k, Composability : 7-Non Interference

X = X, =2 k =2 k, = t
/ Let & be a set of at most ¢ probes :
Let (x{, ..., X, 1), (k{5 ..., k) be encodings of inputs x and k.
\ Let £ « AssignWires(, (x, ..., X,.1), (k{, ..., k1)) be the values taken by the probes.

r @\ There exists a 2-stage simulator such that
|
F =4
[,I, < SimIn(&) with || <tand |[| L1
~ - out « SImOut(x;;, kj; )
\ perfect
andout ~ &
_D
? L=11=2

[BBD+16] G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini.
Strong non-interference and type-directed higher-order masking. ACM CCS 2016

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



Xq Xy ki k, Composability : 7-Non Interference

x; =3 Xy =2 k, =2 k, =4 t
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Xq Xy ki k, Composability : 7-Non Interference

X = X, =2 k =2 k, = t
/ Let & be a set of at most ¢ probes :
\ Let (x{, ..., X, 1), (k{5 ..., k) be encodings of inputs x and k.
Let & « AssignWires(, (x;, ....x,. 1), (ky, ..., k be the values taken by the probes.
® 3 . ® g (&, (x 1) (K +1)) )4 P
r=0
’l’ @\ There exists a 2-stage simulator such that
P =4 .
[,I, < SimIn(&) with || <tand |[| L1
n ~ out « SImOut(x;;, kj; )
\ perfect
andout ~ &
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=16 he=11.=2 =0 I,=0
Out=x|]x°k|]k=x2k1=4 OUt<—$

% 2 Any out is valid as it corresponds to drawing r = out — x,k; — x;k,
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t-Probing Security & composability

I
|
Non Interference: 0 | .\
1
Propagation of the simulation “ C/C[D\()
from inside to gadget to its inputs 4 -
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X1 ‘\xz ‘\kl k,

Non Interference:

|
I
I
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Propagation of the simulation “ (/
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Connecting gadgets in a sequential way
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t-Probing Security & composability

Connecting gadgets in a sequential way

"
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Connecting gadgets in a sequential way

Composition

A sequential composition of --Non interferent
gadgets is also -Non interferent. G

—> t-probing secure with a uniform input
encoding.

There is a way to handle non sequential compositions
by using refreshes to break dependencies. X

Mélissa Rossi Relevance and challenges of random probing sgcurity for PQ algorithms.



/ Attacker model
\ The attacker is given the value of each wire with probability p.
)

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy
leakage. EUROCRYPT 2014
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Attacker model

'The attacker is given the value of each wire with probability p. '

(p, €)-random-probing security

Let 7/ be a set of wires that are drawn with prob. p.

Let (x, ..

X 1)y (Kys -

., k., 1) be uniform encodings of inputs x and «.

Let £ < AssignWires(#', (x, ..

X)) (ks .

There exists a simulator such that

., k.. 1)) be the values taken by the probes.

Sim() ~ &

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy

leakage. EUROCRYPT 2014
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Attacker model

'The attacker is given the value of each wire with probability p. '

(p, €)-random-probing security

Let 7 be a set of wires that are drawn with

Let (x, ..

X 1)y (Kys -

prob. p.

., k., 1) be uniform encodings of inputs x and «.

Let £ < AssignWires(#', (x, ..

X)) (ks .

There exists a simulator such that

., k.. 1)) be the values taken by the probes.

Z can contain up to 19 values, one for each wire !

Sim() ~ &

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy

leakage. EUROCRYPT 2014
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W = @ with proba (1 — p)"’
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Random Probing Security
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k2=4

o
\@

W = @ with proba (1 — p)"’
W = {x,} with proba p(1 —-p)'

Z = {2}
W = {x,,r"} with proba p*(1 — p)’
P = (3,16}

\ W = {x;k; + r,x,k;, k;} with proba p>(1 — p)!®
% g _9 < ={6,4,2}
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Random Probing Security
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o
\@

W = @ with proba (1 — p)"’

|. Draw %

- . _ 18
W = {x,} with proba p(1 — p) 2. Simulate the corresponding &

Z = {2}
W = {x,,r"} with proba p*(1 — p)’
P = (3,16}

§ N
\ W = {x,k, + r,x,k;, k;} with proba p>(1 — p)!®
% g +) Z = 164,2]

... = 2! possible sets %’

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
CryptoExperts Wrach 2025



VAN

Melissa Rossi

W = @ with proba (1 — p)"’

|. Draw %'
B . . \18
W = {x,} with proba p(1 — p) 2. Simulate the corresponding &
Z = {2}
W = {x,,r"} with proba p*(1 — p)’
< =1{3,16}
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The attacker is given the value of each wire with a certain noise.

/ Attacker model
\@

More precisely, the attacker gets ||, (f(vi) + ;7) for each wire v, ,
noise 7; and a leakage function f.
r
3 _
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Samples of power trace

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy
leakage. EUROCRYPT 2014
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https://dblp.org/pid/86/5357.html

p-random
t-probing model probing model

[A Perfect simulation, can be immediately plugged
into the black-box security.

= Extra information can be handled (e.g.
[dPKPR24] , [BBEF+19] )

[A] Comprehensive toolbox for proofs: many
gadgets and composition techniques.

[] Loose reduction to the noisy leakage model

= Even with a perfectly identified leakage of a
chip, the required masking order is
prohibitively high.

= Masked implementations may not be
practically secure.

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi
Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024

[BBEF+19] G. Barthe, S. Belaid, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi and Mehdi Tibouchi. Masking the GLP Lattice-
Based Signature Scheme at Any Order. EUROCRYPT 2019
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[dPKPR24] , [BBEF+19] ) fZ Close link with the physical leakage
’ of a chip.

[A] Comprehensive toolbox for proofs: many

gadgets and composition techniques. [F Existing studies for specific gadgets/

operations.

[] Loose reduction to the noisy leakage model .
[ ] No theoretical framework for

proofs and composition (except with

= Even with a perfectly identified leakage of a
leak free gadgets)

chip, the required masking order is
prohibitively high.

= Masked implementations may not be
practically secure.

[PR13] E. Prouff M. Rivain. Masking against Side-
Channel Attacks: a Formal Security Proof

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi EUROCRYPT 2013

Raccoon: A Maskmg-Frlendly"S/gnature. Proven in the Probing Mod?/. CRYPTO.2024 - | | | [KSB24] D. Kamel, F.-X. Standaert and O. Bronchain,
[BBEF+1_9] G. Barthe, S. Belaid, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi and Mehdi Tibouchi. Masking the GLP Lattice- Information Theoretic Evaluation of Raccoon’s Side-
Based Signature Scheme at Any Order. EUROCRYPT 2019 Channel Leakage. CiC 2024
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noisy leakage
model

[A The success of the simulation depends on
the probability p.

= semi-direct link with the physical leakage
of a chip.

= Masked implementations are provably
secure up to a certain leakage probability

p. For concrete chips, p can lie between
2715 to0 277 (IBCMRRST25])

[] Close link with the physical leakage
of a chip.

[A Existing studies for specific gadgets/

operations.
[] Relatively high entrance price for P

understanding the proofs. [ ] No theoretical framework for

proofs and composition (except with

[] The toolbox remains to be designed. leak free gadgets)

= Could be plugged into the black-box
security.

= Not a lot of gadgets

= The composition techniques have not
converged yet.

[PR13] E. Prouff M. Rivain. Masking against Side-
Channel Attacks: a Formal Security Proof
EUROCRYPT 2013

F.-X Standaert and A. R. Taleb. A Methodology to Achieve Provable Side-

Channel Security in Real-World Implementations. CiC 2025 [KSB24] D. Kamel, F.-X. Standaert and O. Bronchain,

Information Theoretic Evaluation of Raccoon’s Side-
Channel Leakage. CiC 2024
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(p, €, t)-random-probing composability

Let 7 be a set of wires that are drawn with prob. p.
Let (x, ..., x,,1), (k{5 ..., k1) be uniform encodings of inputs x and k.
Let & < AssignWires(#/', (x, ..., X, 1), (k;, ..., k., 1)) be the values taken by the probes.

There exists a 2-stage simulator such that

J _ x L,I, < SimIn(%') with |I.| <tand || <1
\O\< out < SImOut(x;;, k)
O, and out &~ &

<1 <2 [P(« more than ¢ shares of each [ | x| ] and
[| k| ] are required to simulate £)

This is simplified, | ignored the leaking outputs.

< €

[C:BCPRT] Random probing security: Verification, composition, expansion and new
constructions. Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020
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’ RPC:

I Propagation of the simulation |
:from inside to gadget to its inputs

.C\/ e,
|“ ¥ = \

s @\O

[BCPRT] Random probing security: Verification, composition, expansion and new constructions.
Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



’ RPC:

[

I Propagation of the simulation ‘\

. ropas ulat G

lfrom inside to gadget to its inputs \

[BCPRT] Random probing security: Verification, composition, expansion and new constructions.
Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



’ RPC:

I Propagation of the simulation G
:from inside to gadget to its inputs

[BCPRT] Random probing security: Verification, composition, expansion and new constructions.
Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



’ RPC:

I Propagation of the simulation G
:from inside to gadget to its inputs

1

|}
v Except with probability €!
\ 3

s

A\
A\

Melissa Rossi

[BCPRT] Random probing security: Verification, composition, expansion and new constructions.
Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020
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Composition

4 A circuit composed of (7, p, €,)-RPC gadgets

’ RPC: will itself be (z, p, €)-RPC with

! Propagation of the simulation G e=1-
:from inside to gadget to its inputs

1

|}
v Except with probability €!
\ 3

s

A\
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[BCPRT] Random probing security: Verification, composition, expansion and new constructions.
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Composition

4
’ 4
4 A circuit composed of (7, p, €,)-RPC gadgets
N RPC: will itself be (¢, p, €)-RPC with
y k
! Propagation of the simulation G e =1-1i_,(1—-¢
:from inside to gadget to its inputs
|
‘ . of o
v Except with probability €!
\
$
“ The more gadgets, the higher the
simulation is likely to fail.
[BCPRT] Random probing security: Verification, composition, expansion and new constructions.
Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020
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Random Probing Composability

How to estimate the simulation failure probability ¢ ?

k2
k2=4

/
\®

W = @ with proba (1 — p)!°
YW = {xz} with proba p(1 —P)lS

Z = {2}
W = {x,, "} with proba p%(1 — p)'’
Z = {3.16)

\ W = {xk; + r,x.k,k } with proba p3(1 —p)16
FaCEEL

.. ~ 219 possible sets 7

%)
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How to estimate the simulation failure probability € ?

k2
k2:4

/
\®

W = @ with proba (1 — p)!°
W = {x,} with proba p(1 — p)!8

We need to
Z =12} 1) Identify all the sets 7" that cannot be simulated
W = {x;,r"} with proba p*(1 — p)!’ 2) Compute the probability to draw one of them.

£ = {3.,16)

\ W = {x;k; + r,x,k;, k;} with proba p>(1 — p)!®
J _9 < ={64,2}

... = 219 possible sets 7

¥\
Q
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How to concretely compute the € !

SimpleRefresh

VitV =X +X

r<—9$
y1<—x1+r
Yo Xy —F

Probe Distribution Table (Crypto 2021)

Relevance and challenges of random probing security for PQ algorithms.

Wrach 2025

23



Only 5 internal wires for
3 internal variables:

x; (proba.p)

X, (proba.p)

r (proba. 1 — (1 — p)?)
And 2 output wires:
Y1

Y2
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How to concretely compute the € !

Probe Distribution Table (Crypto 2021)
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VitV =X +X
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X, (proba.p) W = {x,} with proba p(1 — p)*

r (proba. 1 — (1 — py’) q W = {r} with proba (1 — (1 = p)*)(1 - p)’
And 2 output wires:

Y W = {x,,r} with proba p(1 — p)(1 = (1 — p)°)
2 W = {x,,r} with proba p(1 — p)(1 = (1 — p)°)

W = {x,,x,} with proba p*(1 — p)’
W = {x;,x,,r} with proba p? (1 — (1 —P)3)

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
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Only 5 internal wires for
3 internal variables:

x; (proba. p)

X, (proba.p)

r (proba. 1 — (1 — p)?)
And 2 output wires:
Y1

Y2

Melissa Rossi

SimpleRefresh

Vit =X +X%

r—39$
y1<—x1+r
Yo <= Xp — F

W = @ with proba (1 —p)°
W = {x,} with proba p(1 - p)’

W = {x,} with proba p(1 — p)*

W = {r} with proba (1 - —p)3)(1 - p)’
W = {x,,r} with proba p(1 — p)(1 = (1 — p)°)
W = {x,,r} with proba p(1 —p)(l — (1 —P)3)
W = {x,,x,} with proba p*(1 — p)’

W = {x;,x,, r} with proba p* (1 — (1 — p)’)

(1-p)y

Probe Distribution Table (Crypto 2021)

(1-py

(I-p)-
(1-(1-p)"h

p(1 —p)*

Relevance and challenges of random probing security for PQ algorithms.

p(1 —p)*

shares

(I-p)-
(1-(1-p)h

of x)

(p, €, t)-random-probing composability

e=p—p(l-p)*

Cases that cannot be simulated (we need all the

23
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This technique does not scale well
specially for large gadgets with many shares (PQC)

Relevance and challenges of random probing security for PQ algorithms.
Wrach 2025
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Using cardinal tables

SimpleRefresh

Vi + Y, = X + X Probe Distribution Table (Crypto 2021)

r—39$
y1<—x1+r
Yo <= Xop — T

(1=py (1 =py

p(l=p)|" 77 |pa=p* 0

(1= (1=py"

(I-p)-

p(l —p) p(l —p)4 (1-(1-p 0

p p—-pd=p* | p-p(-pi |

(1-p)y

2(1 -p)-
2p(1 — p)
PETPNa_a-py| O

p p —p(1 —p)* 1

[BRR25] S. Belaid, M. Rivain and M. Rossi, New Techniques for Random Probing Security and Application to Raccoon Signature Scheme
published in Eurocrypt 2025

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
CryptoExperts Wrach 2025
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SimpleRefresh
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[BRR25] S. Belaid, M. Rivain and M. Rossi, New Techniques for Random Probing Security and Application to Raccoon Signature Scheme

published in Eurocrypt 2025

Melissa Rossi
CryptoExperts

Relevance and challenges of random probing security for PQ algorithms.

Wrach 2025

(I-p)-
(1-(1-p)h
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Using cardinal tables

SimpleRefresh

Probe Distribution Table (Crypto 2021)
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r—39$
y1<—x1+r
Yo <= Xop — T

(1-p)* A -py

(1-p)-

(I-p)-
(1-(1-p)h

(1-p)y

2(1 —p) -
2p(1 —p)| 2P 0

(1—(1-p)H Probability envelopes: &, (¢, )

out

p p —p(1 —p)* 1

[BRR25] S. Belaid, M. Rivain and M. Rossi, New Techniques for Random Probing Security and Application to Raccoon Signature Scheme
published in Eurocrypt 2025

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
CryptoExperts Wrach 2025 25
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P(« more than t shares of each [ |x'|] are required to
simulate £, and 7 output shares of each [|y|] »)

Relevance and challenges of random probing security for PQ algorithms.

]

< E€
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Cardinal Random Probing Composability
(cardinal-RPC)

[1x]] G [1 Y]]
&

P

P(« exactly tl.i” shares of each [|x!|] are required to —
: out ' < gﬂ?(t )
simulate 2, and ;" output shares of each [13/]] ») J

V@, .. 1) € [0,n)0, Y (0, ..., 1) € [0,n]™,

Relevance and challenges of random probing security for PQ algorithms.
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Cardinal Random Probing Composability
(cardinal-RPC)

Random Probing Security with Auxiliary Inputs and

public Outputs
(RPS-Al-O)

Relevance and challenges of random probing security for PQ algorithms.
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Cardinal Random Probing Composability
(cardinal-RPC)

, 1, E7)- advantage of the composition:
(P, 1, £3)-RPC advantage of th posit
e <1 -1 —-¢) —¢)

Relevance and challenges of random probing security for PQ algorithms.
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Cardinal Random Probing Composability
(cardinal-RPC)

(P, %3 )-cardinal RPC advantage of the composition:

@3 (4in) = Z %l(zln) z2_ (i)

l‘Ol/tf tOI/tf
1=0

Relevance and challenges of random probing security for PQ algorithms.
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[A Existing elementary gadgets proved (Cardinal or threshold)-RPC
= Addition
= Multiplication
= Copy
= Refresh

[A] Composition achievable by combining the enveloppes.

[A Other composition techniques

[BFO23] Berti, F., Faust, S., Orlt, M. Provable secure parallel gadgets. TCHES 2023

[JMB24] V. Jahandideh, B. Mennink and L. Batina
An Algebraic Approach for Evaluating RandomProbing Security With Application to AES. TCHES 2024

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
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[A Existing elementary gadgets proved (Cardinal or threshold)-RPC

= Addition

= Multiplication
= Copy

= Refresh

[A] Composition achievable by combining the enveloppes.

[A Other composition techniques

Exciting work still lies ahead !

[ ] More advanced gadgets
= Mask conversions, comparisons
= Sampling with specific distributions
[] Optimized composition for tighter bounds

[] Formal verification

[] Efficient protected implementations

[BFO23] Berti, F., Faust, S., Orlt, M. Provable secure parallel gadgets. TCHES 2023

[JMB24] V. Jahandideh, B. Mennink and L. Batina
An Algebraic Approach for Evaluating RandomProbing Security With Application to AES. TCHES 2024

Melissa Rossi

Relevance and challenges of random probing security for PQ algorithms.
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2) The challenges: scaling up
3) Random-probing Raccoon

4) ldeas for future works
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KeyGen

Generate a large matrix A € 9?];(/

« Add noise to »

Fori € [0,T]:
Sample d small uniforms randoms
[[r]]= (g, oo 7gy)

[[x]]=1[lx[T+[]r|]
Refresh [ | x| ]

Signature
[| 7| ] = Refresh(0,...,0)

.
. 2. Add noiseto [|r]]
2. [|s]]1=1(0,...,0) 3. Compute the commitment [|w|] =A - [|r]]
3. Add noise to [|s]] 4. Add noiseto [ |w]]
4. Compute [|[t|]]=A-[]|s]] 5. Decode[|w]|]tow
5. Add noiseto [ |1]] 6. Compute the challenge ¢ = H(w, msg, vk)
6. Decode[|?|]tot 7. Compute the response [|z|]=1[]|s|]-c+[|r]|]
/. The verification key is (A, 1) 8. Decode [|z]] to z
8. The signing key is [ |s]] No Rejection Sampling
9. The signature is sig = (c, z)

=l
[

|
oo BN =

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Distribution of the random that is added

Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.



100

80

60

40

20

—o— Dilithium
—a— Raccoon

I

(sw) paadg

1 2

Melissa Rossi

16
Number of shares d

32

q 549824583172097
n 512
k 5
I 4
d |6
T 2

= Quasi-linear in the masking order

= Proof in the (d — 1)-probing model

= Same assumptions as Dilithium/ML-DSA
= Simpler

= Same key size for the verification key

= VWhen masked, orders of magnitude faster

Relevance and challenges of random probing security for PQ algorithms.
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q 549824583172097
n 512
100 | 5
—e— Dilithium ‘
30 —— Raccoon | 4
d 16
60 A T 2
ad
5
40 =
> = Quasi-linear in the masking order
20 = Proof in the (d — 1)-probing model
= Same assumptions as Dilithium/ML-DSA
0 = Simpler
12 4 6 16 32 = Same key size for the verification key
Number of shares d = VWhen masked, orders of magnitude faster

Not selected for NIST additional post-quantum signatures

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
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.
2.
3.
4.
5.
6.
/.
8.

KeyGen .
' FunCtlona”y « Add noise to »
Generate a large matrix A & %gxg
[|s]]=(0,...,0) @ Add d - T small uniform randoms

Add noise to
Compute [ |1
Add noise to

® | 2
28|
* 5.

6

D@ 7
@ 8

9.

| s]]
1=A-[]s]]
| 7] ]

Decode [ |f|] to ¢

The verification key is (A, 1)
The signing key is [ | s] ]

Signature
[|7]|] = Refresh(0,...,0)
Add noise to [ | 7] ]
Compute the commitment [ |w|]=A-[]|r]|]
Add noise to [ |w]]
Decode [ |w]|] tow
Compute the challenge ¢ = H(w, msg, vk)
Compute the response [ |z|] = [|s|] - c+[|7]]
Decode [|z]] to z
No Rejection Sampling
The signature is sig = (c, z)

Relevance and challenges of random probing security for PQ algorithms.
Wrach 2025
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Design rationale of our new refresh

Melissa Rossi
CryptoExperts

Relevance and challenges of random probing security for PQ algorithms.
Wrach 2025
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Composable (cardinal or threshold RPC)

To be composable, they need to include

elementary gates are needed some refreshes

Melissa Rossi

I,

B = 000

Relevance and challenges of random probing security for PQ algorithms.
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Composable (cardinal or threshold RPC)

To be composable, they need to include

elementary gates are needed some refreshes

Melissa Rossi

I,

B = 000

Relevance and challenges of random probing security for PQ algorithms.

-

| *x % % DEAD o ALIVE & % %

Efficient

random-probing

composable
refresh

REWARD 100 000« |
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Composable (cardinal or threshold RPC) To be composable, they need to include
elementary gates are needed some refreshes

SIS0 = DR 0

= Raccoon’s refresh is not (yet?) proved RPC (cardinal or threshold).
We could not prove the random probing composability of the quasilinear refresh.

[BCPZ16] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. CHES 2016

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.

-

| % % % DEAD oz ALIVE * & %

Efficient

random-probing

composable
refresh

REWARD 100 000¢
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Composable (cardinal or threshold RPC) To be composable, they need to include

elementary gates are needed some refreshes

SIS0 = DR 0

= Raccoon’s refresh is not (yet?) proved RPC (cardinal or threshold).
We could not prove the random probing composability of the quasilinear refresh.

The probability computation rapidly explodes if

there are too many dependencies in the
intermediate variables.

[BCPZ16] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. CHES 2016

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
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Efficient

random-probing
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refresh

HEWARD 100 00
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] * x % DEAD oz ALIVE % % %

Composable (cardinal or threshold RPC) To be composable, they need to include
elementary gates are needed some refreshes Efficient

SIS0 = DR 0

random-probing
composable
refresh

REWARD 100 000¢

= Raccoon’s refresh is not (yet?) proved RPC (cardinal or threshold).
We could not prove the random probing composability of the quasilinear refresh.

The probability computation rapidly explodes if Random-probing-friendly feature

there are too many dependencies in the
intermediate variables.

The gadget should contain as much independent

random as possible (including the indexes of the
shares that are touched)

[BCPZ16] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. CHES 2016

Mélissa Rossi Relevance and challenges of random probing security for PQ algorithms.
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New Random Probing Composable Refresh

[[z]]1=1(0,0,0,0,0,0,0,0)

Relevance and challenges of random probing security for PQ algorithms.
Wrach 2025
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New Random Probing Composable Refresh

[[z]]1=1(0,0,0,0,0,0,0,0)

| st iteration r<$,3G,jp)<% [G,j)=@B7)]

[ ‘Z ‘ ] — (09097‘19090909 o rlao)

Relevance and challenges of random probing security for PQ algorithms.
Wrach 2025
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New Random Probing Composable Refresh

[1z]]1 = (0,0,0,0,0,0,0,0)
|st iteration ry < 8,36,/ < $ 11,0 = (B,7)]
[1z]]=(0,0,r;,0,0,0, — r;,0)
2nd iteration 7 — 8,00 <% [ =(1,8)]
[|z]] = (r,0,r,0,0,0, — r{, — 1)

Relevance and challenges of random probing security for PQ algorithms.
Wrach 2025
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[[z]]1=1(0,0,0,0,0,0,0,0)

ri < ) (i1, J1) < $ [(71,j1) = (3,7)]

| st iteration
2nd iteration ry < $,(pp) <% [ =(1.8)]
3rd iteration ry < 8, (i3, j3) < $ [(53, J3) = (2,3)]

Relevance and challenges of random probing security for PQ algorithms.
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Algorithm 1 RPZeroEnc™"”

Output: [z] = (21,...,2,) € K" such Algorithm 2 RPRefresh”([a])

that z1 +---+2, =0

1. [2] = (0,0,...,0) {n zeros} Input: [a] = (a1,...,ar) € K" n
2. for 1 =1 to ¥ do Output: [[3]] — (31, o -,Sn) e K such
3.  Select two distinct indices 21,72 € that s; +--- + Snn=7 a1 =k ¢ kit
[1,n]} uniformly at random 1. [2] <~ RPZeroEnc™"()
4 $K 2. for i =1 ton do
| T 3. Si < Qi + 2;
> el 4. end for
o Gz Ry T T 5. return |[s]
7. end for
8. return [z]

Relevance and challenges of random probing security for PQ algorithms.
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New Random Probing Composable Refresh

RPC (n,t,p)
N

N N
w 4
w N

|
N
o
|

Melissa Rossi
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40

60 80 100
Number of random values y
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- n = 16 shares
- 32 (r;) or (r}) per vector and polynomial coefficient
- EUF-CMA secure even if |5 values of each (7)) or (7)) leak

Relevance and challenges of random probing security for PQ algorithms.



Melissa Rossi

- n = 16 shares
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Key Generation Signature
Original New Gadgets|Original New Gadgets
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= All gadgets can be accessed with the elementary gates but dedicated designs allow for better performance.

= Proofs are more difficult than with 7-probing for large gadgets: a lot of cases to account for.

= A technique could be to look at small dedicated gadgets form PQC like the quasilinear refresh and the
secadd and try to separate it in ‘independent steps’ and add randomness.
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ldea behind secadd

x+y=xbyDbc

Where ¢ =0and Vi > 1,c¥ = (c?P & xD) @ (c? & yV) @ (x© & yW)
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= Several composition techniques already exists with very different ideas.

= Compare them, find links and look at the best way of composing random probing gadgets.

= Current composition techniques lack a lot of tightness.

[BCPRT20] 8. Belaid, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R. Random probing security:
Verification, composition, expansion and new constructions. CRYPTO 2020

[BFO23] Berti, F., Faust, S., Orlt, M. Provable secure parallel gadgets. TCHES 2023

[DFZ19] S. Dziembowski, S. Faust, K. Zebrowski
Simple refreshing in the noisy leakage model. ASIACRYPT 2019

[JMB24] V. Jahandideh, B. Mennink and L. Batina
An Algebraic Approach for Evaluating Random Probing Security With Application to AES. TCHES 2024
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