Security study of a MQ-Commitment

Julia Sauvage

Sorbonne Université, CNRS, LIP6

March 31, 2025

Goal of our Work

MQ commitment

- Post-quantum commitment.
- possibility to produce zero knowledge proof on the message with MPC-in-the-head methods.
- Security relies on the problem of solving multivariate quadratic polynomials (MQ problem).
- \Rightarrow Zero knowledge proof better than $Commit(\mu, r) = SHA256(\mu \| r)$.

My work

- Cryptanalysis of this commitment.
- Study of specifics instances of the MQ problem.
- Finding optimal parameters.

MQ Problem

▶ Let *F* a random quadratic map from \mathbb{F}_q^n to \mathbb{F}_q^m , i.e. $F = f_1, \ldots, f_m$ in *n* variables $\mathbf{x} = x_1, \ldots, x_n$ in \mathbb{F}_q^n with f_i quadratic polynomials.

• The quadratic polynomials are denoted by:

$$f_i(\mathbf{x}) = \mathbf{x}^T A_i \mathbf{x} + \mathbf{b_i}^T \mathbf{x} + c_i$$

with $A_i \in \mathbb{F}_q^{n \times n}$, $\mathbf{b_i} \in \mathbb{F}_q^n$ and $c_i \in \mathbb{F}_q$.

• MQ problem: Find a $\mathbf{x} \in \mathbb{F}_q^n$ such that $F(\mathbf{x}) = 0$

Our Commitment

Let \mathbb{F}_q be a finite field and k, n and m positive integers. The (q, k, n, m)-MQ commitment is defined as follows:

- ▶ Setup: Sample two random quadratic maps F (resp. G) from \mathbb{F}_q^n to \mathbb{F}_q^k (resp. \mathbb{F}_q^m). Public parameters $\rightarrow (q, k, n, m, F, G)$.
- ▶ **Commit:** Given a message $\mu \in \mathbb{F}_q^k$, the commit is $c \to (\mu + F(\mathbf{r}), G(\mathbf{r}))$ with $\mathbf{r} \xleftarrow{\$} \mathbb{F}_q^n$.
- Verification: We recompute the commitment.

Parameters examples

$$q = 256, k = 246, n = 115, m = 32$$

MQ Commitment - Security Properties

Commitment

 $Commit(\mu, \mathbf{r}) = (\mu + F(\mathbf{r}), G(\mathbf{r}))$

Properties of our Commitment Scheme

- Hiding: Let μ and μ' two messages chosen by the adversary and c = (c₁, c₂) the commitment of one of these messages. The adversary needs to find if c is the commitment for μ or μ'.
- **Binding:** The adversary needs to find a commitment c and two messages μ and μ' such that c is a valid commitment for μ and μ' .

Statistically binding: \rightarrow Very low probability $(2^{-\lambda})$ of the existence of a collision.

Computationally binding: \rightarrow Finding a collision is hard (2^{λ} operations) With λ the level of security

Computationally Hiding

 $\mathit{c} = (\mathit{c}_1, \mathit{c}_2)$ commitment of μ or μ' ?

Best known attack

We try to find r such that:

$$\mu + F(\mathbf{r}) - c_1 = 0$$
 and $G(\mathbf{r}) - c_2 = 0$

If we find a solution, μ is the message, else it is $\mu'.$

- MQ problem with a random quadratic map from \mathbb{F}_q^n to \mathbb{F}_q^{k+m} .
- Well studied complexity.
- Formal proof with important security loss.
- Parameter with q = 256 for 128 bits of security:

Hiding	Pro	ovable	Heuristic			
	n	т	п	т		
	912	1872	115	278		

Breaking the Binding Property

Finding a collision on the commitement

• If we have $\mathbf{x} \in \mathbb{F}_q^n$ and Δ with $\Delta \neq 0$ such that:

$$G(\mathbf{x}) = G(\mathbf{x} + \Delta) \tag{1}$$

▶ Let's be $\mu \in \mathbb{F}_q^k$ and $\mu' \leftarrow \mu + F(\mathbf{x}) - F(\mathbf{x} + \mathbf{\Delta})$ and we have:

$$Commit(\mu', \mathbf{x} + \Delta) = (\mu' + F(\mathbf{x} + \Delta), G(\mathbf{x} + \Delta))$$
$$= (\mu + F(\mathbf{x}) - F(\mathbf{x} + \Delta) + F(\mathbf{x} + \Delta), G(\mathbf{x}))$$
$$= (\mu + F(\mathbf{r}), G(\mathbf{r}))$$
$$= Commit(\mu, \mathbf{x})$$

• Breaking the binding property is equivalent to finding a solution for (1)

Statistically Binding

Injective quadratic map

G quadratic map from \mathbb{F}_q^n to \mathbb{F}_q^m . If $m \gg n$, then we expect *G* to be **injective** with high probability; In this case $G(x) = G(x + \Delta)$ implies that $\Delta = 0$. \rightarrow Statistically binding. **Example:** For $\mathbb{K} = 257$ and a security level of 128 bits we need $\rightarrow m > 2 * n + 16$

Case m > 2n:

- Statistically binding.
- If $m \leq 2n$, G is not injective.

 \rightarrow Goal: obtaining smaller commitments with computational binding.

Computational Binding

Finding a collision on G

- Studied cases : $m \leq 2n$.
- We have to solve **structured** polynomials.

First study of the structure of our system

We want **x** and Δ such that $\Delta \neq 0$ and for $1 \leq i \leq m$:

$$g_i(\mathbf{x} + \Delta) - g_i(\mathbf{x}) = 0$$

With $g_i(\mathbf{x}) = \mathbf{x}^T A_i \mathbf{x} + \mathbf{b_i}^T \mathbf{x} + c_i$

$$g_i(\mathbf{x} + \Delta) - g_i(\mathbf{x}) = (\mathbf{x} + \Delta)^T A_i(\mathbf{x} + \Delta) - \mathbf{x}^T A_i \mathbf{x} + \mathbf{b_i}^T \Delta$$
$$= \Delta^T A_i \mathbf{x} + \mathbf{x}^T A_i \Delta + \Delta^T A \Delta + \mathbf{b_i}^T \Delta$$

\rightarrow Linear in x

Computationally Binding

Finding a collision on *G***- Easy case:** $m \le n$

- We choose random values for the entire Δ .
- We have now a random **linear** system of m equations in n variables.
- If $m \leq n$, this linear system will have a solution with great probability.

If $m \leq n$

- We just have a linear system to solve.
- $\rightarrow m^3$ operations.
- The problem is easy.
- Unusable parameters.

Computationally Binding - Naive Algorithm

Studied case

- $n \le m \le 2n$
- We want to solve $G(\mathbf{x} + \Delta) = G(\mathbf{x})$ with $\Delta \neq 0$.

Naive algorithm

- **(1)** We set the *n* variables of Δ to random values.
- **2** We have m random linear equations in n variables.
 - ightarrow This system has a solution with probability $q^{-(m-n)}$
- 3 We try to solve this system

We have to repeat this in average $q^{(m-n)}$ to find a solution. $\rightarrow q^{(m-n)}n^3$ operations in average.

Computationally Binding - Algebraic methods

Studied case

- $n \le m \le 2n$
- We want to solve $G(\mathbf{x} + \Delta) = G(\mathbf{x})$ with $\Delta \neq 0$.

Reduction to a bilinear system

We want for $1 \leq i \leq n$:

$$g_i(\mathbf{x} + \Delta) - g_i(\mathbf{x}) = 0$$

And so:

$$g_i(\mathbf{x} + \Delta) - g_i(\mathbf{x}) = (\mathbf{x} + \Delta)^T A_i(\mathbf{x} + \Delta) - \mathbf{x}^T A_i \mathbf{x} + \Delta^T \mathbf{b}_i$$
$$= \Delta^T A_i \mathbf{x} + \mathbf{x}^T A_i \Delta + \Delta^T A_i \Delta + \Delta^T \mathbf{b}_i$$
$$= (\Delta + 2\mathbf{x})^T A_i \Delta + \Delta^T \mathbf{b}_i$$

Bilinear system !

Only if A is a symmetric matrix $\rightarrow q \neq 2^k$.

Reduction to Bilinear systems

Bilinear Systems

m bilinear polynomials $F = (f_1, \ldots, f_m)$ in $n_x + n_y$ variables $\mathbf{x} = x_1, \ldots, x_{n_x}$ and $\mathbf{y} = y_1, \ldots, y_{n_y}$ with $f_i(\mathbf{x}) = \mathbf{x}^T A_i \mathbf{y} + \mathbf{b}_i^T \mathbf{x} + \mathbf{c}_i^T \mathbf{y} + e_i$

Reduction to a bilinear system

We have:

$$g_i(\mathbf{x}+\Delta)-g_i(\mathbf{x})=(\Delta+2\mathbf{x})^{ op}A\Delta+\Delta^{ op}\mathbf{b}_i$$

Let $\mathbf{y} = 2\mathbf{x} + \Delta$ and $\Delta_0 = 1$:

$$g_i(\mathbf{x} + \Delta) - g_i(\mathbf{x}) = \mathbf{y}^T A_{i,\{1,n\}} \Delta_{1,n} + \mathbf{b}_{i,\{1,n\}} \Delta_{1,n}^T + A_{i,0} \mathbf{y}^T + b_{i,0}$$

Solving Bilinear Systems

Bilinear Systems

m bilinear polynomials $F = (f_1, \ldots, f_m)$ in $n_x + n_y$ variables $\mathbf{x} = x_1, \ldots, x_{n_x}$ and $\mathbf{y} = y_1, \ldots, y_{n_y}$ with $f_i(\mathbf{x}) = \mathbf{x}^T A_i \mathbf{y} + \mathbf{b}_i^T \mathbf{x} + \mathbf{c}_i^T \mathbf{y} + e_i$

 A_i , **b**_i, **c**_i and e_i are uniformly random on \mathbb{F}_q .

- $n_x + n_y = m$: Known complexity [Faugère et al., 2011].
- *n_x* + *n_y* ≤ *m*: Open problem
 Intuition : We have a lower bound on the complexity with given *n_x*, *n_y* and *m*.

New Algorithm for Finding a Collision

Studied case

- ▶ $n \le m \le 2n$
- We want to solve $G(\mathbf{x} + \Delta) = G(\mathbf{x})$ with $\Delta \neq 0$.

Algebraic algorithm

- **1** We set the 2n m variables of Δ to random values.
- **2** We have m random bilinear equations in m variables.
- **3** We try to solve this system with algebraic algorithm.
 - \rightarrow This system has a solution with great probability.

Known complexity !

Hybrid Method

Let F be a quadratic map from \mathbb{F}_q^m to \mathbb{F}_q^m $F = (f_1, \ldots, f_m)$ in m variables.

Hybrid method [Bettale et al., 2012]

- **1** We set k variables to random values.
- **2** We have m quadratics equations in m k variables.
- **3** We try to solve this system with algebraic algorithm.
 - \rightarrow This system has a solution with probability q^{-k} .

We have to repeat this operation q^k times in average.

Hybrid method for our case

Hybrid algorithm

- **(1)** We set the 2n m + k variables of Δ to random values.
- **2** We have *m* random bilinear equations in m-k variables.
- **3** We try to solve this system with algebraic algorithm.
 - \rightarrow This system has a solution with probability q^{-k} .

We have to repeat this operation q^k times in average.

Claim: Lower bound on the complexity.

Macaulay matrix

$$f_0(\mathbf{x}) = x_0^2 + 100x_0x_1 - 11x_1^2 - 121x_0x_2 + 23x_1x_2 - 104x_2^2 + 101x_0 - 22x_1 + 101x_0 - 36x_1 + 101x_1 - 100x_1 + 100x_1 +$$

Macaulay matrix d = 2

Macaulay matrix

$$f_0(\mathbf{x}) = x_0^2 + 100x_0x_1 - 11x_1^2 - 121x_0x_2 + 23x_1x_2 - 104x_2^2 + 101x_0 - 22x_1 + 7x_2 - 36$$

$$f_1(\mathbf{x}) = x_0x_1 - 13x_1^2 - 38x_0x_2 - 19x_1x_2 + 19x_2^2 - 86x_0 + 33x_1 - 24x_2 - 45$$

Macaulay matrix d = 3

	x_{0}^{3}	$x_0^2 x_1$		x_{2}^{3}	x_{0}^{2}	$x_0 x_1$	x_{1}^{2}	<i>x</i> ₀ <i>x</i> ₂	$x_1 x_2$	x_{2}^{2}	<i>x</i> ₀	x_1	<i>x</i> ₂	1
f_0	(0	0	• • •	0	1	100	-11	-121	23	-104	101	-22	7	-36
													-24	
-												0	0	0
$x_1 f_0$	0	1	• • •	0	0	101	33	0	7	0	0	-36	0	0
÷														
$x_2 f_1$		0		19	0	0	0	-86	33	-24	0	0	-45	0 /

XL algorithm

Requirement

System with one or zero solution.

 $\Rightarrow\,$ Square or overdetermined system.

Algorithm

- () We compute the Macaulay matrix of degree i for $i \in \mathbb{N}$
- 2 Until full rank (as many linearly independant rows as columns)
- 3 Search a solution to the linear system (Block-Wiedemann)

If quadratic system has:

- ▶ 1 solution: We found the only solution
- \blacktriangleright 0 solution: linear system \rightarrow no solution

Goal : Knowing the degree denote d for given parameters

 $\Rightarrow \ {\sf Known \ complexity}$

XL algorithm

Problem: Linear dependencies

- $\blacktriangleright~\#$ lines of Macaulay matrix \rightarrow known
- **but** linear dependencies.

• Example
$$f_0 = x_0^2 + x_2$$
 and $f_1 = x_1x_2 + 1$

$$x_1 x_2 f_0 + f_0 - x_0^2 f_1 - x_2 f_1 = f_1 f_0 - f_0 f_1 = 0$$

 \Rightarrow Linear dependence in the degree 4 Macaulay matrix.

Random systems

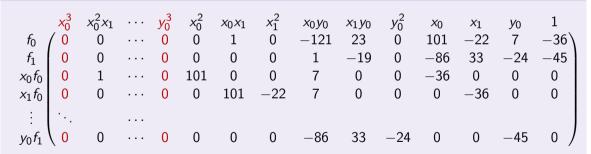
- ▶ F5 criterium.
- > We known exactly how many linearly interdependent rows we have at any degree.
- ▶ *d* smallest degree.
- Known complexity.

Macaulay matrix on bilinear systems

$$f_0(\mathbf{x}) = x_0 x_1 - 121 x_0 y_0 + 23 x_1 y_0 + 101 x_0 - 22 x_1 + 7 y_0 - 36$$

$$f_1(\mathbf{x}) = x_0 y_0 - 19 x_1 y_0 - 86 x_0 + 33 x_1 - 24 y_0 - 45$$

Macaulay matrix d = 3



No x_i^d and y_i^d monomials.

XL on bilinear systems

Square bilinear systems

- > Less monomials and more linear dependencies than random systems.
- ▶ Specific criterium for square random bilinear systems [Faugère et al., 2011].
- ▶ known *d*.

Overdetemined bilinear systems

- More linear dependencies than square systems.
- ▶ Criterium from [Faugère et al., 2011] don't get them all.
- ▶ Intuition: we have **less** linearly independent rows than expected.
- \Rightarrow Expected *d* is smaller than real degree.
- \Rightarrow Lower bound on the complexity.

Optimal parameters

Goal : small *m* (optimal commitment size), $q \sim 257$

Studied case

- ▶ $n \le m \le 2n$
- We want to solve $G(\mathbf{x} + \Delta) = G(\mathbf{x})$ with $\Delta \neq 0$.

Naive algorithm	XL algorithm	Hybrid XL algorithm
$q^{(m-n)}n^3$	$\binom{m+2}{2}\binom{2m-n}{m-n}^2$	$q^k {m-k+2 \choose 2} {m-k+d \choose d}^2$
Optimal in our case.	Optimal when exhaustive search on \mathbb{F}_q is too costly.	<i>d</i> is a lower bound. We choose <i>k</i> to be optimal.

Summary and Work in Progress

Summary for binding security study

	$m \leq n$	$n \le m \le 2n$	$m \ge 2n$
Binding security	No	Computational	Statistical
Time complexity	<i>m</i> ³	$q^{m-n}n^3$	

With $2 \le \omega \le 3$

Work in progress

- ▶ Proof for our assumption.
- ▶ Study the possible application of the Hybrid method on bilinear systems.

Summary and Work in Progress

Summary for binding security study

	$m \le n$	$n \le m \le 2n$	$m \ge 2n$
Binding security	No	Computational	Statistical
Time complexity	<i>m</i> ³	$q^{m-n}n^3$	

With $2 \le \omega \le 3$

Work in progress

- ▶ Proof for our assumption.
- > Study the possible application of the Hybrid method on bilinear systems.

Thank you for your attention !