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Goal of our Work

MQ commitment

» Post-quantum commitment.

» possibility to produce zero knowledge proof on the message with MPC-in-the-head
methods.

» Security relies on the problem of solving multivariate quadratic polynomials (MQ
problem).

= Zero knowledge proof better than Commit(p, r) = SHA256(u||r).

My work

» Cryptanalysis of this commitment.
» Study of specifics instances of the MQ problem.

» Finding optimal parameters.



MQ Problem

» Let F a random quadratic map from Fg to Fg', i.e. F=fi,...,fy in nvariables
X = X1,..., X in Fg with f; quadratic polynomials.

» The quadratic polynomials are denoted by:
fi(x) =x"Ax+ b "x + ¢

with A; € FZX", b; € Fg and ¢; € Fq.

» MQ problem: Find a x € Fg such that F(x) =0



Our Commitment

Let IF, be a finite field and k, n and m positive integers. The (g, k, n, m)—MQ commitment is
defined as follows:

» Setup: Sample two random quadratic maps F (resp. G) from FJ to Ff (resp. FT").
Public parameters — (g, k,n,m, F, G).

» Commit: Given a message p € IF"C;, the commit is ¢ — (u + F(r), G(r)) with r & Fg.

» Verification: We recompute the commitment.

Parameters examples

q =256,k = 246, n = 115, m = 32



MQ Commitment - Security Properties

Commitment
Commit(u,r) = (u + F(r), G(r))

Properties of our Commitment Scheme

» Hiding: Let 1 and 1/ two messages chosen by the adversary and ¢ = (c1, ¢2) the
commitment of one of these messages.
The adversary needs to find if ¢ is the commitment for y or 1.

» Binding: The adversary needs to find a commitment ¢ and two messages . and p’ such
that ¢ is a valid commitment for p and p/'.

Statistically binding: — Very low probability (27*) of the existence of a collision.

Computationally binding: — Finding a collision is hard (2* operations) With X the level of
security



Computationally Hiding

¢ = (1, ) commitment of p or u' ?

Best known attack

» We try to find r such that:
p+F(r)—co=0and G(r) — =0

v

v

If we find a solution, i is the message, else it is p'.

MQ problem with a random quadratic map from Fg to FS*’”.

Well studied complexity.

Formal proof with important security loss.

Parameter with g = 256 for 128 bits of security:

Hiding Provable Heuristic
n m n m
912 1872 115 278




Breaking the Binding Property

Finding a collision on the commitement

» If we have x € Fg and A with A # 0 such that:
G(x) = G(x+ A)
» Let's be p € Fg and p/ < u+ F(x) — F(x + A) and we have:

Commit(p',x + A) = (i + F(x + A), G(x + A))
= (p+ F(x) — F(x+ A) + F(x+ A), G(x))

= (u+ F(r), 6(r))
= Commit(p, x)

» Breaking the binding property is equivalent to finding a solution for (1)



Statistically Binding

Injective quadratic map

G quadratic map from Fg to Fg'.

If m>> n, then we expect G to be injective with high probability;

In this case G(x) = G(x + A) implies that A = 0.

— Statistically binding.

Example: For K = 257 and a security level of 128 bits we need — m > 2% n+ 16

Case m > 2n:

» Statistically binding.

» If m < 2n, G is not injective.
— Goal: obtaining smaller commitments with computational binding.



Computational Binding

Finding a collision on G

» Studied cases : m < 2n.

» We have to solve structured polynomials.

First study of the structure of our system

We want x and A such that AZ 0 and for1 < i< m:
gi(x+A)—gi(x)=0
With gi(x) = xT Aix + b; "+ ¢
gi(x+A)—gi(x) = (x+A)TA(x+A)—x"Ax+bTA
=ATAx+xTAA+ATAA +b;TA

— Linear in x



Computationally Binding

Finding a collision on G- Easy case: m <n

» We choose random values for the entire A.
» We have now a random linear system of m equations in n variables.

» If m < n, this linear system will have a solution with great probability.

If m<n

» We just have a linear system to solve.
» — m?> operations.

v

The problem is easy.

» Unusable parameters.



Computationally Binding - Naive Algorithm

Studied case
» n<m<2n
» We want to solve G(x + A) = G(x) with A # 0.

Naive algorithm

@ We set the n variables of A to random values.

@® We have m random linear equations in n variables.
— This system has a solution with probability g=(m—")

© We try to solve this system

We have to repeat this in average g(™=" to find a solution.
— q{m=" 3 operations in average.



Computationally Binding - Algebraic methods

Studied case
» n<m<2n
» We want to solve G(x + A) = G(x) with A # 0.

Reduction to a bilinear system
We want for 1 </ < n:
gi(x+A) —gi(x)=0
And so:
gi(x+A)—gi(x) = (x+A)TA(x+A)—x"Aix + ATb;
=ATAx+xTAA+ATANA+ ATb;
= (A+2x)TAA+ ATb;

Only if A is a symmetric matrix — q # 2K,



Reduction to Bilinear systems

Bilinear Systems

m bilinear polynomials F = (f,...,fn) in ny + n, variables x = xy, ..., x,, and
Y=Y, s Yn,
with fi(x) = x" Ajy + biTx + ciTy + €

Reduction to a bilinear system

We have:
gi(x+A) —gi(x) = (A+2x)TAA + ATb;

Lety =2x+ A and Ag = 1:

gi(x+A)—gi(x) =y A 1. Aun+ bi 1AL, + Aoy’ + bio



Solving Bilinear Systems

Bilinear Systems

m bilinear polynomials F = (f,...,fn) in ny + n, variables x = xy, ..., x,, and

Y=VY1,---5Yn,
with fi(x) = xTAjy + b x + ¢y + e;

Ai, bi, ci and e; are uniformly random on Fj.

» n + n, = m: Known complexity [Faugere et al., 2011].

» nyx +n, < m: Open problem
Intuition : We have a lower bound on the complexity with given n,, n, and m.



New Algorithm for Finding a Collision

Studied case
» n<m<2n
» We want to solve G(x + A) = G(x) with A # 0.

Algebraic algorithm

@ We set the 2n — m variables of A to random values.
® We have m random bilinear equations in m variables.

©® We try to solve this system with algebraic algorithm.
— This system has a solution with great probability.

Known complexity !



Hybrid Method

Let F be a quadratic map from Iqu to ]F‘g’
F=(f,...,fn) in m variables.

Hybrid method [Bettale et al., 2012]

@ We set k variables to random values.
® We have m quadratics equations in m — k variables.

©® We try to solve this system with algebraic algorithm.
— This system has a solution with probability g—*.

We have to repeat this operation g* times in average.



Hybrid method for our case

Hybrid algorithm

@ We set the 2n — m-+k variables of A to random values.
® We have m random bilinear equations in m—k variables.

© We try to solve this system with algebraic algorithm.
— This system has a solution with probability ¢ *.

We have to repeat this operation g* times in average.

Claim: Lower bound on the complexity.



Macaulay matrix

fo(x) = x3 + 100xpx1 — 11x — 121xgx2 + 23x1x2 — 10453 + 101xg — 22x; + 101xp — 36
f(x) = xox1 — 13x12 — 38x9x2 — 19x1 %0 + 19x22 — 86xg + 33x; — 24xy — 45

Macaulay matrix d = 2

Xg XoX1 X12 X0Xo  X1XD X22 X0 X1 X0 1
fo(1 100 -11 -—-121 23 —104 101 -—-22 101 -36
1\ 0 1 -13 -38 -—-19 19 —-86 33 —24 -—45



Macaulay matrix

fo(x) = x5 + 100xpx; — 11x7 — 121xpx0 + 23x1x0 — 104x3 + 101x9 — 22x1 4 7x2 — 36
fi(x) = xox1 — 13x¢ — 38xgx2 — 19x1x0 + 19x5 — 86x0 + 33x; — 24x, — 45

Macaulay matrix d = 3

xg’ xg X1 XS’ xg XoX1 X12 X0Xo  X1XD x22 X0 X1 X2 1
fo 0 0 - 0 1 100 —-11 -—-121 23 —104 101 —-22 7 36
f1 0 0 0 0 1 —-13 -38 —-19 19 —-86 33 —24 -—45
xofo| 1 100 0 101 33 0 7 0 0 —-36 O 0 0
xi1fo| O 1 0 0 101 33 0 7 0 0 -36 0 0
xof1 \ 0 0 19 0 0 0 —86 33 24 0 0 —45 0



XL algorithm
Requirement

System with one or zero solution.

= Square or overdetermined system.

Algorithm

©® We compute the Macaulay matrix of degree j for i € N
® Until full rank (as many linearly independant rows as columns)
© Search a solution to the linear system (Block-Wiedemann)
If quadratic system has:
» 1 solution: We found the only solution
» 0 solution: linear system — no solution
Goal : Knowing the degree denote d for given parameters
= Known complexity



XL algorithm

Problem: Linear dependencies

» # lines of Macaulay matrix — known
» but linear dependencies.

» Example fy = xg +x and f; = xyx0 + 1
xuefy + fy — xgh — xofy = fify — fofy =0
= Linear dependence in the degree 4 Macaulay matrix.

Random systems

» F5 criterium.

v

We known exaclty how many linearly interdependent rows we have at any degree.
» d smallest degree.

» Known complexity.



Macaulay matrix on bilinear systems

fo(x) = xox1 — 121xpy0 + 23x1y0 + 101xg — 22x1 + 7yp — 36
fl(x) = XoYo — 19X1y0 - 86X() + 33X1 — 24y0 — 45

Macaulay matrix d = 3

xg’ xg X1 yg’ xg XoX1 X12 XoYo X1Y0 yg X0 X1 Yo 1
fo 0 0 0 0 1 0 —121 23 0 101 —-22 7 —36
fi 0 0 0 0 0 0 1 —19 0 —86 33 —24 —45
xofo| O 1 0 101 0 0 7 0 0 -36 0 0 0
x1fo| O 0 0 0 101 —22 7 0 0 0 —36 0 0
yofi \ 0 0 0 0 0 0 —86 33 -24 0 0 —45 0

No x,-d and y,-d monomials.



XL on bilinear systems

Square bilinear systems

» Less monomials and more linear dependencies than random systems.
» Specific criterium for square random bilinear systems [Faugere et al., 2011].

» known d.

Overdetemined bilinear systems

» More linear dependencies than square systems.

» Criterium from [Faugere et al., 2011] don't get them all.

» Intuition: we have less linearly independent rows than expected.
= Expected d is smaller than real degree.

= Lower bound on the complexity.



Optimal parameters

Goal : small m (optimal commitment size), g ~ 257

Studied case

» n<m<2n
» We want to solve G(x + A) = G(x) with A # 0.

Naive algorithm XL algorithm Hybrid XL algorithm
=) -3 +2\ (2m—n\2 —k+2\ (m—k+d\2
g‘™"n (") G (") (M)
Optimal when exhaustive d is a lower bound.

Optimal in our case. search on [F is too costly. We choose k to be optimal.



Summary and Work in Progress

Summary for binding security study

m<n n<m<2n m > 2n
Binding security No Computational | Statistical
Time complexity m3 @

With2 <w <3

Work in progress

» Proof for our assumption.

» Study the possible application of the Hybrid method on bilinear systems.
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Thank you for your attention !




