
Compressed verification for post-quantum signatures

Gustavo Banegas, Anaëlle Le Dévéhat, Benjamin Smith
22/04/2025 // WRACH // Roscoff

Équipe-Projet GRACE, Inria and École polytechnique

1

The post-quantum transition

Quantum computers are coming!

We need to move to post-quantum systems, which

• run on classical systems
• resist quantum and classical attacks.

The transition to post-quantum systems is a long-term project.

There are many choices to be made, and comparing options is complicated.

2

Signatures at classical 128-bit security level / NIST Level 1

Candidate Paradigm PK (B) Sig (B)

Pre-quantum Ed25519 ECC 32 64

New standards ML-DSA (Level II) Structured lattice 1 312 2420
Falcon-512 Structured lattice 897 666
SPHINCS+-128s Hash 32 7856
SPHINCS+-128f Hash 32 17088

Round 4/On-ramp Wave822 Unstructured code 3677390 ≤ 822
Squirrels-I Unstructured lattice 681780 1019

3

To structure or not to structure

Using structured variants of the underlying cryptographic problem
(e.g. moving from LWE to Module- or Ring-LWE):

Pros:

• Improves parameter sizes dramatically
• Can improve runtime performance

Cons:

• Adds strong hypotheses to security arguments
• Historically, algebraic structure is an important new attack vector

4

The goal

“Conservative” signatures on unstructured code or lattice problems
are absolutely, spectacularly impractical for applications where PKs are
transmitted with signatures (e.g. TLS certs).

They are merely totally impractical for applications where a long-term PK is
stored/cached by the verifier to check multiple signatures:

• Software updates
• Authentication (e.g. ssh)
• Root certificates
• ...

Our goal: to reduce the storage and computational cost for verifying conservative
code- and lattice-based signatures.

5

Bernstein’s Rabin–Williams
signature verification trick

Rabin–Williams signatures (pre-quantum)

Rabin–Williams signatures: faster than RSA, security equivalent to factoring.

• Private key: primes p ≡ 3 (mod 8) and q ≡ 7 (mod 8)
• Public key: N = pq. For 128-bit security: take log2 N ≈ 3072.
• Signature on M under N: tuple σ = (e, f, s) with e = ±1, f ∈ {1, 2}, s ∈ [0,N),
and

efs2 ≡ Hash(M) (mod N) . (1)

• Verification: check (1). Cost: Hashing M, plus one modular squaring mod N.

6

Bernstein’s trick (1997)

Suppose the verifier will verify multiple signatures under the same key N.

First, we lift the verification equation

efs2 ≡ Hash(M) (mod N) to efs2 = Hash(M) + kN in Z

for some integer k (about the size of N).

Expand signatures to (e, f, s, k).
The verifier can efficiently check the latter equation modulo a random
128-bit prime (or several smaller primes) with negligible chance of error.
The verifier can amortize the prime-generation cost across any number of
signatures by keeping the prime (or prime list) secret and reusing it.

Signatures: 2× longer. Reduced PK N mod ℓ (for secret prime ℓ): 24× smaller.

7

The informal security argument

What’s really happening: the verifier checks homomorphic images of the
signatures under a secret ring homomorphism from Z.

The only useful homomorphisms from Z are Z→ Z/ℓZ for prime (or composite) ℓ

If an adversary can forge for this verifier, i.e. find (e, f, s, k) s.t. efs2 ̸≡ Hash(M)

(mod N) but efs2 ≡ Hash(M) + kN (mod ℓ), then they can find ℓ (and vice versa).

• The adversary is essentially reduced to exhaustive search for ℓ using queries
to a verification oracle.

• Each failed forgery attempt (e, f, s, k) reveals only that ℓ ∤ (efs2 − h− kN).
• Prime ℓ: each forgery attempt tests ≤ 2× 3072/128 = 48 candidates for ℓ.

8

Compressed verification

The general approach

Bernstein’s trick was designed to save time in RW verification:
working mod a 128-bit ℓ is faster than working mod a 3072-bit N.

We observe that it also saves space
because ℓ is much smaller than N

Idea: apply the same idea to post-quantum code- and lattice-based signatures.

Replace secret (· mod ℓ) : Z→ Z/ℓZ with a secret homomorphism ϕ :M→M
whereM is the cryptosystem’s code or lattice, andM is a much smaller module.

9

Compressed verification: the protocol

Signer (Compressed) Verifier
SK, PK← KeyGen() CK← CKeyGen()

PK

VK← VKeyGen(PK, CK)
σ ← Sign(SK,m)

(m, σ)

Accept|Reject← CVerify(m, σ, VK)

CKeyGen: generate secret compression key CK (prime/homomorphism).
VKeyGen: compress public key PK to private verification key VK.
CVerify: verify with private VK in place of public PK.

10

Compressing Wave

Wave signatures in theory

Public key: a random-looking matrix R ∈ F(n−k)×k
3 .

Now M := (In−k|R)⊤ ∈ Fn×(n−k)
3 is a parity-check matrix for a ternary linear code.

Signatures: σ = (salt, s) with s ∈ Fn
3 .

Verification: Accept ⇐⇒ CONSTRAINT(s) and sM =
∑n−1

i=0 siMi = Hash(salt ∥ m).
Here, Hash maps {0, 1}∗ into Fn−k

3 .

Use the fact that M = (In−k|R)⊤: rewrite verification equation as

CONSTRAINT(s) and
n−1∑
i=0

ciMi = 0n−k where c := s− (Hash(salt ∥ m) ∥ 0k) .

11

Compressed verification for Wave

Wave verification: public key R ∈ F(n−k)×k
3 . We write M := (In−k|R)⊤ ∈ Fn×(n−k)

3 .

Verify: accept σ = (salt, s) iff

CONSTRAINT(s) and
n−1∑
i=0

ciMi = 0n−k where c := s− (Hash(salt ∥ m) ∥ 0k) .

VKeyGen: Store M := (In−k|R)⊤P = MP ∈ Fn×d
3 where P $← F(n−k)×d

3 .
For λ-bit security: can take d ≈ log3(2)λ.

CVerify: accept σ = (salt, s) iff

CONSTRAINT(s) and
n−1∑
i=0

ciMi = 0n−k where c := s− (Hash(salt ∥ m) ∥ 0k) .

12

Wave signatures: compressed verification

For Wave, compressed verification replaces (n− k)× k trits with n× d trits
where d ≈ log3(2)λ≪ k = (n− k).

Pros: • Compression factor 30-40×
• Save 30% of the verification time

Cons: • Incompatible with signature truncation =⇒ sigs 2× longer
• Detailed explanation of multiplication by a random matrix
makes for an extra boring talk

...So let’s skip the details.

13

Compressing Squirrels

Squirrels (Espitau–Niot–Sun–Tibouchi, 2023)

Squirrels is a GPV signature over cocyclic lattices, and most lattices are cocyclic.

• Global system parameter: ∆ =
∏m

j=1 ℓj, with each ℓj a 30-bit prime
Why? Because all arithmetic mod ∆ is done using the CRT.
...A bit like RNS, but with multiplicative depth 1.

• Hash maps into [0,q)n where q = 4096
• Public key: a list (v1, . . . , vn) of integers mod ∆ (Convention: vn = −1)
• Signature: s ∈ Zn such that

∥s∥2 ≤ β and
n∑
i=1

civi ≡ 0 (mod ∆) where c = s− Hash(r,M) .

For Level I: dimension n = 1034; m = 165 =⇒ log2∆ = 5048; bound log2 β ≈ 21.

14

Squirrels: lifting to Z

We want to choose a secret Z-module homomorphism from (Z/∆Z)n,
but there aren’t many of these (we are limited to the global primes ℓ1, . . . , ℓm).

Instead, we lift the verification equation to Z:

n∑
i=1

civi = k∆ for some k ∈ Z where c = s− Hash(r,M) .

This k is unique, and must be small: −⌊
√
n⌊β2⌋⌋ ≤ k ≤ (n− 1)(q− 1) + ⌊

√
n⌊β2⌋⌋.

Now, choose a random 128-bit prime modulus π (or a product of smaller primes)
and check the linear equation mod π.

15

Squirrels: reducing mod π

We need to check
n∑
i=1

civi = k∆ for some k ∈ Z where c = s− Hash(r,M) .

• Reducing ∆ mod π: precomputation.
• The integers ci and k are already smaller than π.
• Reducing vi mod π: amortised over many verifications.

But this ignores a very nice feature of Squirrels: using the CRT and ∆ =
∏m

j=1 ℓi
to do all the computation modulo 30-bit primes instead of a 5048-bit ∆.

We want to compute each vi mod π on the fly, from the vectors (vi mod ℓj)
m
j=1,

without reconstructing the big integer vi.

16

The explicit CRT

Main algorithmic tool: the Explicit CRT.

Precompute integers q1, . . . , qj satisfying qj(∆/ℓj) ≡ 1 (mod ℓj).

Explicit CRT: If 0 ≤ vi < ∆ and (vi,1, . . . , vi,s) = (vi mod ℓ1, . . . , vi mod ℓm), then

vi = α∆− ⌊α⌋∆ where α =
m∑
j=1

vi,jqj
ℓj

. (2)

We can compute vi mod π by computing (α∆− ⌊α⌋∆) mod π.

• Precompute ∆ mod π

• Precompute each Qj := qj∆/ℓj mod π;
• Computing α∆ =

∑
j vi,jQj is then easy;

• The challenge is to compute ⌊α⌋ mod π without computing α.

17

Approximating α

Lemma: Let α1, . . . , αm be non-negative real numbers, and set α :=
∑n

j=1 αj.
Fix some integer a ≥ log2m+ 1 (fixed-point precision). If we let

f :=
⌊m
2a +

1
2a

m∑
j=1

⌊
2aαj

⌋⌋
,

then f = ⌊α⌋ or ⌊α⌋+ 1. Further, if α− ⌊α⌋ < 1−m/2a then f is exactly ⌊α⌋.

In our case: easily compute fixed-point approximations to each αj = xjqj/ℓj with
small precision a ≥ log2m+ 1; the ECRT result is correct an error of at most 1.

18

Squirrels: what about k?

Hence: for each 1 ≤ i ≤ n, given the PK entry vi = (vi mod ℓ1, . . . , vi mod ℓm), we
can easily compute

vi := vi + ϵi∆ mod π where ϵi ∈ {0, 1} is unknown.

Now, verification is
n∑
i=1

ci · vi = k′∆ where k′ := k+
n∑
i=1

ϵi is unknown.

But k′ is short (about the same size as k)! So we can precompute ∆−1 (mod π),
and verify using only 32-bit arithmetic, checking

∥s∥22 ≤ ⌊β2⌋ and
∣∣∣ 1
∆

n∑
i=1

ci · vi mod π
∣∣∣ ≤ β′ where ci = si + hi .

(If
∑

i civi ̸= k′∆ with k′ short, then
∑

i civi/∆ is a random, larger element mod π.)
19

Compressed Squirrels (ouch!)

Compressed Squirrels:

• Public keys: same ((vi mod ℓj)
m
j=1)

n
i=1 (1034× 165× 4 = 682440 bytes)

• Signatures: same (r, S), no need to include k (1019 bytes)
• Verification key: π and (vi)ni=1 ((1034+ 1)× 16 = 16560 bytes)

Need extra storage for ECRT coefficients to compress incoming PKs, but these
depend only on the global ℓi and can be re-used across several public keys.

In practice: don’t use a 128-bit prime π; use e.g. 4 or 5 31-bit primes to maintain
practical advantages of Squirrels.

20

Performance

Results

Reference Compressed Verif. time (kCycles)
Instance |σ| (B) |PK| (B) |VK| (B) |VK|/|PK| Ref. Comp. Speedup

Squirrels-I 1 019 681780 20700 3.04% 280 254 9.3×
Wave822 822∗ 3677390 207968 5.65% 1101 771 30×

Squirrels-III 1 554 1629640 49824 3.06% 551 520 5.7×
Wave1249 1249∗ 7867598 304192 3.86% 2330 1892 18.8×

Squirrels-V 2 025 2786580 90598 3.25% 916 898 1.9×
Wave1644 1644∗ 13632308 400416 2.94% 3911 3221 17.4×

Timings: C reference implementations (& our C code for compressed verification)
running on an Intel Core i7-1365U processor.

21

	Bernstein's Rabin–Williams signature verification trick
	Compressed verification
	Compressing Wave
	Compressing Squirrels
	Performance

